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A B S T R A C T

In this paper, an analysis procedure has been presented for cold-formed steel sections, for decomposing the
buckling modes obtained using spline finite strip method (SFSM) into their primary and independent buckling
modes such as local, distortional and global buckling. This procedure utilizes principles of generalized beam
theory (GBT) to evaluate the restraint matrices corresponding to different modes. The restraint matrices are
integrated in to spline stiffness matrices using transformation technique to extract pure modes corresponding to
local, distortional and global modes. The proposed analysis technique termed as constrained spline finite strip
method (cSFSM) has been validated for cold-formed steel open cross-sections subjected to axial compression and
bending under various boundary conditions. The results are in agreement with buckling stresses evaluated using
constrained finite strip method (cFSM) and GBT.

1. Introduction

Evaluation of elastic buckling stresses corresponding to global,
distortional and local buckling is a prerequisite for the design of cold-
formed steel structural members using Direct Strength Method (DSM).
Elastic buckling stresses can be calculated using analytical expressions
or by using numerical methods like finite element method (FEM), finite
strip method (FSM) or by using generalized beam theory (GBT). The
finite strip method (FSM) commonly used for the analysis of thin walled
steel structures is a combination of Ritz-Galerkin approach and finite
element concept which choses trigonometric function in longitudinal
direction and polynomial interpolation function in transverse direction.
The main disadvantage of this method is the infinite continuity of the
longitudinal interpolation function, which makes it difficult in imple-
menting complex boundary conditions and discontinuities. The con-
tinuity and discontinuity requirements during the analysis can be
satisfied using spline finite strip method (SFSM) by replacing the
trigonometric function in longitudinal direction with spline function.

The spline finite strip method (SFSM) was introduced for the
analysis of elastic thin plates and shallow shells with various interior
and boundary conditions [1]. SFSM has been used for buckling analysis
by Lau and Hancock [2] on thin plates and thin-walled structures
subjected to longitudinal compression and bending, transverse com-
pression and shear by incorporating various boundary conditions. This
method was extended for inelastic buckling analysis of thin-walled
structural members and plates by taking the non-linear material stress-

strain properties, strain hardening and residual stresses into account
[3]. Later Hancock et al. [4] performed buckling and nonlinear analysis
of thin-walled members undergoing local, distortional and overall
buckling incorporating full nonlinear response with post-local buckling
and plasticity using spline finite strip and semi-analytical finite strip
method. A nonlinear elastic analysis based on spline finite strip method
has been developed by Kwon and Hancock [5] for handling local,
distortional and overall buckling modes in the post-buckling range and
allowing geometric imperfections, arbitrary loading and non-simple
boundary conditions. Elasto-plastic large deflection analysis of cold-
formed steel members was performed using nonlinear spline finite strip
method based on total Lagrangian approach by incorporating geometric
and material nonlinearity, initial imperfections and residual stresses
[6]. Iso-parametric spline finite strip formulation has been presented by
Eccher et al. [7,8] for elastic buckling analysis and geometric nonlinear
analysis of perforated folded plate structures. Yao and Rasmussen
[9,10] presented iso-parametric spline finite strip method for material
inelastic and geometric nonlinear analysis of perforated thin-walled
steel structures by including nonlinear solution techniques, inelastic
material models, selective reduced integration strategies, convergence
criteria and solution procedures. Pham and Hancock [11] performed
buckling analysis of lipped channel section under shear using semi
analytical finite strip method and spline finite strip method.

The buckling analysis using SFSM as well as other methods like FSM
and FEMyield several buckling modes, out of these, the buckling mode
corresponding to local, distortional and global buckling has to be
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identified for design using DSM. The generalized beam theory (GBT)
can be used to identify the buckling modes automatically, since the
method is generalization of classical beam theory in which various
deformation modes are used as basis functions. To decompose the
buckling modes in FSM, a procedure known as constrained finite strip
method (cFSM) based on GBT basic assumptions has been proposed for
global and distortional buckling modes by Ádány and Schafer [12,13].
The procedure was extended by Ádány and Schafer [14] by decompos-
ing local, shear/transverse extension modes by including sub nodes in
addition to global and distortional buckling modes. The cFSM proce-
dure has been applied to closed and branched cross-sections by Djafour
et al. [15] for decomposing local buckling mode from combined global-
distortional mode. A modal identification technique from generalized
buckling mode of FSM and its impact on the choice of basis,
orthogonalization and normalization of vector spaces for local, distor-
tional and global deformation spaces has been proposed by Li et al.
[16]. The mode decomposition using constrained finite strip method
(cFSM) and mode identification from constraint matrices has been
extended for members with general boundary condition by Li and
Schafer [17]. The cFSM procedure has been generalized by Ádány and
Schafer [18,19] for closed cross-sections and cross-sections with open
and closed parts for decomposition into mechanically meaningful
subfields in addition to basic deformation modes.

Among the research related to decomposition of buckling modes
from FEM, Casafont et al. [20] developed a procedure for decomposing
buckling modes based on combined GBT and cFSM in which the finite
element model is constrained to buckle in a particular mode. The
procedure was extended to members with general boundary conditions
by suitably varying the interpolation function for restraint matrix in the
longitudinal direction [21]. Mode identification from shell finite
element analysis using cFSM base functions for members subjected to
axial compression and bending was also reported in literature [22,23].
The participation of global, distortional and local buckling mode in
general modes from finite element analysis has been evaluated by
Nedelcu and Cucu [24] using GBT cross-sectional deformation modes.
The mode identification procedure using FSM base functions has also
been applied to nonlinear analysis of shell finite element models [25].
Recently, a shell finite element was proposed by Ádány [26] for
constrained shell finite element analysis.

In SFSM, buckling mode decomposition into combined global-
distortional and local mode was done by Djafour et al. [27] using
GBT basic assumptions based on procedure implemented in [15]. In the
present investigation, base functions for buckling modes has been
constructed based on cFSM and GBT principles and implemented in
spline finite strip formulation of thin walled members under axial
compression and flexure for various boundary conditions. Pure local,
distortional and global buckling modes are evaluated by constraining
the spline finite strip model to buckle in a particular mode.

2. Spline finite strip formulation

Spline finite strip method is well documented in the literature and
hence it is not elaborated in this paper. However, for clarity, the
formulation is briefly summarized. In this method, the thin walled
prismatic member having length ‘a’ is discretized by ‘n’ nodal lines in
transverse direction (x axis) and ‘m’ sections along longitudinal
direction (y axis). Each section knot has four degree of freedom, ‘u’,
‘v’, ‘w’ and ‘θxz’ as shown in Fig. 1. The displacement function of the
strip is expressed as the product of spline function in longitudinal
direction and polynomial interpolation function in transverse direction.

d N ϕ δ{ } = [ ][ ]{ } (1)

where d{ } is the vector of generalized displacements, N[ ]is the matrix of
shape function in transverse direction, ϕ[ ] is the matrix of spline
functions in longitudinal direction and δ{ }vector of displacements at
section knots in the strip. The shape function in transverse direction is

represented by Hermitian interpolation function for flexural displace-
ments and Lagrangian interpolation function for membrane displace-
ments.

Basic cubic spline (B3) having four sections has been adopted in the
present analysis. A local B3 spline is a piecewise cubic polynomial
which is twice differentiable (C2 continuous). A local B3 spline and
spline series is shown in Fig. 2. A standard B3 spline function is defined
in Eq. (2). Spline amendment schemes are implemented at ends for
various boundary conditions. Two additional section knots (dummy
knots) are introduced one at either end of the plate strip to completely
define the amendment scheme. In this study, amendment scheme
proposed by Fan [1] satisfying both geometric and natural boundary
conditions has been implemented.
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The strain-displacement relation and stress-strain relation of thin
orthotropic plate are established similar to the finite element analysis.
Here ε{ } is the strain vector and σ{ } is the stress vector at various points,
B[ ] is the strain-displacement matrix and D[ ] is the stress-strain matrix,
the subscripts ‘b’ and ‘m’ corresponds to flexural and membrane

Fig. 1. Spline finite strip with coordinate axes.

Fig. 2. (a) Local B3 spline (b) B3 spline series.
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