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A B S T R A C T

The paper is devoted to the stability analysis of a simply supported three layer beam. The sandwich beam
consists of two metal facings, a metal foam core and two binding layers between the faces and the core. In
consequence, the beam is a five layer beam. The main goal of the study is to elaborate a mathematical model of
the beam, analytical description and solution of the stability problem. The beam is subjected to an axial
compression and, in particular, a pulsating compression. The nonlinear hypothesis of deformation of the cross
section of the beam is formulated. Based on the Hamilton's principle the system of four stability equations is
derived. The system is reduced to one equation of motion (Mathieu's equation) serving as a basis for determining
the critical loads, free vibrations and unstable regions. The influence of the binding layers is considered. The
results of solutions of the vibration problem analysis are shown in tables and figures. The analytical model is
verified numerically with the use of Finite Element Analysis.

1. Introduction

Sandwich structures are widely applied since the mid of 20th
century, for example in aerospace, automotive, rail and shipbuilding
industry. These structures are characterized by high stiffness with
regard to their mass. Ashby et al. [1] described the mechanical
properties of metal foams. Banhart [2] provided a comprehensive
description of various manufacturing processes of metal foams and
porous metallic structures. Kubiak [3] studied buckling and postbuck-
ling behavior of thin plates and thin-walled structures with flat walls,
subjected to static and dynamic load. Ventsel and Krauthammer [4]
presented principles of thin plate and shell theories, emphasized novel
analytical and numerical methods for solving linear and nonlinear plate
and shell problems. Belica et al. [5] presented a nonlinear approach to
dynamic stability of an isotropic circular cylindrical shell made of metal
foam and subjected to combined loads. Jasion [6], Jasion and Magnucki
[7,8] studied analytically, numerically and experimentally the global
and local buckling-wrinkling of the face sheets of sandwich beams.
Mania [9] analyzed the dynamic response of FGM thin plate structures
subjected to combined loads. Małachowski et al. [10] presented the
experimental investigations and numerical modelling of closed-cell
aluminium alloy foam (Alporas). Jasion and Magnucki [7] analyzed
the local buckling problem of sandwich beams under pure bending.
Magnucka-Blandzi [11] carried out a theoretical study on dynamic
stability of a metal foam circular plate. Magnucka-Blandzi and
Magnucki [12] optimized the sandwich beam with metal foam core

under strength and stability constrains. Magnucki et al. [13] studied
three-layer beams with corrugated core subjected to compression and
four point bending. Magnucki et al. [14,15] and Smyczynski and
Magnucka-Blandzi [16] presented the strength analysis of a simply
supported five layer sandwich beams with a metal foam core.
Smyczynski and Magnucka-Blandzi [17] analyzed the stability of a five
layer sandwich beam with the use of broken line hypothesis of the
deformation of a flat cross section of the beam. Kim et al. [18] studied a
dynamic stability behavior of the shear-flexible composite beams
subjected to the nonconservative force based on finite element model
using Hermitian beam elements. Magnucka-Blandzi [19] compared the
results of vibration problem of a sandwich beams for the three different
modified Timoshenko hypotheses of deformation. Grygorowicz et al.
[20] analytically and numerically studied elastic buckling of a three-
layered beam with variable mechanical properties of the core. Pawlus
[21,22] presented the computational results of critical loads calcula-
tions of annular three-layered plates with a soft core. Yang et al. [23]
analyzed the dynamic stability of composite laminated beams with
delaminations. Loja et al. [24] considered the use of various shear
deformation theories to formulate different layerwise models, imple-
mented through kriging-based finite elements. They solved dynamic
problem of soft core sandwich beams in frequency domain. Mohanty
et al. [25] presented the evaluation of static and dynamic behavior of
functionally graded Timoshenko beams. Smith et al. [26] and
Szyniszewski et al. [27,28] characterized mechanical properties of
hollow sphere steel foam. They provided and verified a new design
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method for the in-plane compressive strength of steel sandwich panels
composed of steel face sheets and foamed steel cores.

The present paper is devoted to stability analysis of a simply
supported sandwich beam, which consists of five layers: two thin
facings (aluminium sheets) of thickness hf , one core (aluminium foam)
of thickness hc and two thin binding layers (e.g. glue) of thickness hb.
Mechanical properties of each layer are different and depend on their
material. The beam has the length L , the width b and the depth H . The
beam carries a compressive axial load N (Fig. 1) varying in time and
assumed in the following form:

N t N N θt( ) = + cos( ),a0 (1)

where

N0– average value of the load,
Na– amplitude of the load,
θ t, – frequency and the time dependent compressive load N t( ).

2. Nonlinear hypothesis of deformation of a flat cross section of
the beam

The field of displacement for the flat cross section of the five layer
beam is presented in Fig. 2. Assuming the nonlinear hypothesis the
shear effect is taken into account.

The longitudinal displacements are formulated as follows:
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where
x h h= /b c1 , x h h= /f c2 – dimensionless parameters,
ζ z h= / c– dimensionless coordinate,
ψ x t u x t h( , ) = ( , )/ c1 1 , ψ x t u x t h( , ) = ( , )/ c2 2 , ψ x t( , )3 – dimensionless func-
tions of displacement, which determine the field of displacements.

If ψ ≡ 03 the proposed nonlinear hypothesis becomes the broken line
hypothesis. So the assumed hypothesis is a generalization of the
classical one described in [14,15,17].

Strains of the layers of the five layer beam are defined by the
following geometric relations:
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Fig. 1. Scheme of the five layer beam subjected to an axial force.

Fig. 2. The field of displacement – a nonlinear hypothesis.
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