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A B S T R A C T

Linear and nonlinear analyses of shear deformable thin and thick arbitrary straight-sided quadrilateral plates are
reported here using smoothed finite element technique. The Reissner-Mindlin plates are discretized with
quadrilateral background cells. Then membrane and bending stiffness matrices of background quadrilateral cells
are evaluated using edge-based smoothed finite element method(ES-FEM). The shear stiffness matrix is calculated
based on "smoothed shear strain approach" and the performance is compared with "edge-consistent four-node
quadrilateral finite element". The convergence, accuracy and sensitivity to mesh distortion of the present
quadrilateral element is examined. Thereafter, the nonlinear bending and vibration analyses of trapezoidal
and arbitrary straight-sided quadrilateral composite plates are presented for which only limited analytical results
are available in the literature.

1. Introduction

Non-rectangular plates, like skew, trapezoidal and quadrilateral
plates find wide application in civil, mechanical and aerospace
industry. Linear bending and vibration analyses of such quadrilateral
plates have been attempted by several investigators using various
analytical methods [1–16]. Liew [1] employed pb2-Ritz method, while,
Saadatpour and Azhari [2] used Galerkin method for the linear static
analysis of thin trapezoidal plates. Free vibration problem of thin
trapezoidal plates are solved using Galerkin's method [3–5], super-
position method [6], differential quadrature method [7,8], Rayleigh-
Ritz method [9] and spline finite strip method [10]. Bending, buckling
and vibration behaviour of thin quadrilateral plates are investigated by
Civalek [11] using discrete singular convolution method. Differential
quadrature method [12,13], Rayleigh-Ritz method [14] and discrete
singular convolution method [15] was also employed to study moder-
ately thick trapezoidal plates. However, the above analytical works
deals with the bending / vibration behaviour of thin / thick trapezoidal
plates using linear structural theory. Leung and Zhu [16] attempted
geometrically nonlinear vibration of trapezoidal plates using trapezoi-
dal hierarchical finite element method. Recently, Shufrin et al. [17]
employed multi-term extended Kantorovich method for the geometri-
cally nonlinear bending analysis of thin trapezoidal plates.

Numerical methods, such as the finite element method has been
widely used for nonlinear static and dynamic analyses of plates and
shells with complicated loading and boundary conditions. However, use
of numerical techniques for the analysis of trapezoidal / quadrilateral

plates is scarce in the literature, even if skew plates are widely
investigated using the finite element method [18,19]. Orris et al. [20]
proposed a quadrilateral element by combining triangular elements to
analyze thin trapezoidal plates, while Barik and Mukhopadhyay [21]
attempted free vibration analysis of thin trapezoidal plates using
isoparametric finite element. In the case of non-rectangular domain,
the relationship between the isoparametric coordinates (ξ, η) and
Cartesian coordinates (x, y) is nonlinear and it is well know that the
accuracy of the commonly used "isoparametric elements" reduces with
mesh distortion. To overcome the above difficulty, several Mindlin-
Reissner quadrilateral plate bending elements are proposed in the litera-
ture [22] and the quadrilateral elements are tested mostly for rectan-
gular / skew plates. After critical review of literature on this subject,
Cen and Shang [22] observed that a promising distortion-insensitive
finite element for quadrilateral plate is missing. Therefore, only limited
study on the bending / buckling / vibration behaviour of arbitrary
straight-sided quadrilateral plates are available in the literature [23–
29] using different analytical approaches or mesh-free methods.

Smoothed finite element method (SFEM) proposed by Liu et al. [30]
appears to be a promising numerical method for modelling non-
rectangular domain. Subsequently, the cell based smoothed finite
element method has been employed to develop triangular [31,32]
and four-node quadrilateral [33,34] Reissner–Mindlin plate bending
elements. The curvature smoothing technique has been used for
estimating the bending strain. The shear locking phenomenon of
Reissner–Mindlin plates was eliminated by the discrete shear gap
(DSG) technique for triangular elements [31,32] and mixed interpola-
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tion concept (MITC) for quadrilateral elements [33,34]. Wu and Wang
[35] discussed about the shear stress oscillation of MITC4 element for
distorted mesh and proposed an enhanced CS-FEM based on smoothed
curvature and smoothed shear strain (spanned over the adjacent element).
The above elements are found to perform well for rectangular, skew and
circular plates.

Subsequently, Liu et al. [36] proposed an edge-based smoothed
finite element method (ES-FEM) for solid mechanics problems. The
authors employed triangular elements to analyze static and dynamic
problems of solid mechanics and concluded that the proposed ES-FEM
is “super-convergent and ultra-accurate”. Edge-based SFEM with triangu-
lar elements has also been extended for the analysis of Mindlin–
Reissner plates by Cui et al. [37] and Nguyen-Xuan et al. [38]. The
membrane and bending stiffness matrices were evaluated using edge-
based smoothing domains, while stabilized discrete shear gap (DSG)
technique for triangular elements was employed for the shear stiffness
matrix and this combined method was named as “edge-based smoothed
stabilized discrete shear gap method (ES-DSG3)” by Nguyen-Xuan et al.
[38]. Phung-Van et al. [39] extended the ES-DSG3 method for the
analysis of composite and sandwich plates using layer-wise theory.

It is observed from the literature that the cell-based and edge-based
smoothed finite element methods [30,36] have been mostly used with
triangular / rectangular elements to analyze shear deformable plates.
However, to the best of the author's knowledge, the efficiency of ES-
FEM with quadrilateral elements has not been explored yet, possibly
due to the difficulty of interpolating locking-free shear strain in
Reissner–Mindlin quadrilateral elements. Moreover, only limited study
is reported on the geometrically nonlinear analysis of Reissner–Mindlin
plates using the smoothed finite element method [40,41].

The purpose of the present work is to formulate distortion insensi-
tive quadrilateral elements for Reissner-Mindlin plates using edge-
based (ES-FEM) smoothed finite element method. The membrane
strains and curvatures inside the smoothing domains are evaluated
using smoothing techniques [36]. The shear strain along the tangential
direction of an inclined edge is assumed to be constant [42,43] and
evaluated using the displacements and rotations of the two nodes
connecting the inclined edge. The relative shear rotations of the nodes
are evaluated using the tangential shear strains of the four edges and
the smoothed shear strain field is proposed. The performances of the
developed elements are tested for shear deformable thin and thick
trapezoidal and quadrilateral plates for which only limited analytical
works are available in the literature. Thereafter, the present numerical
techniques are extended for geometrically nonlinear bending and free
vibration analyses of quadrilateral composite plates for which results
are scarce in the literature.

2. Smoothed finite element formulation

The purpose of the present study is to analyze moderately thick

arbitrary straight-sided quadrilateral plates including the effect of
transverse shear deformation. Accordingly, the first-order shear defor-
mation theory (Reissner–Mindlin plate theory) of plate is considered
here. The displacement components (u0, v0, w) at a point (x, y, z) of a
quadrilateral plate may be written as:

u x y z u x y zθ x y
v x y z v x y zθ x y
w x y z w x y
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Here, u0, v0 and w are the mid-surface displacements; θx and θy are
independent rotations of the normal to the mid-surface in xz and yz
planes, respectively.

Following von Kármán strain-displacement assumption, the in-plane
(εxx, εyy and εxy) strains may be written as:
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Here, ε{ }m
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NL the linear and nonlinear components of the
membrane strains; ε{ }b is the curvatures. The strain components are
given by
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Here, w,x and w,y represent partial derivatives of "w" with respect to
"x" and "y" respectively. The shear strains ε{ }s may be written as:
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The internal strain energy (U = Um+Ub+Us) of the plate may be
written as
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Fig. 1. Schematic representation of the edge-based smoothing domain of quadrilateral elements (field nodes are encircled).
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