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A B S T R A C T

The design of lightweight structures is often driven by buckling phenomena. Increasing demands for fuel-
efficient aircraft structures makes post-buckled designs attractive from a structural weight perspective.
However, the need for reliable and efficient design tools that accurately model the emerging nonlinear post-
buckled landscape, potentially one containing multiple branches, remains. With this aim, a previously derived
flat shell element, MISS-4, is extended to the geometrically nonlinear analysis of variable-angle tow (VAT)
composite plates using Koiter's asymptotic approach. The curvilinear fiber paths in VAT lamina open the design
space for tailoring the buckling and post-buckling capability of plates and shells. A finite element implementa-
tion of Koiter's asymptotic approach allows the pre-critical and post-critical behavior of slender elastic
structures to be evaluated in a computationally efficient manner. Its implementation uses a fourth-order
expansion of the strain energy, and requires both the structural modeling and finite element discretization
procedures to be, at least, of fourth order. The corotational approach adopted in the MISS-4 element readily
fulfills this requirement by starting from a linear finite element discretization. VAT plates with prismatic fiber
variations and different loading conditions are analyzed using the MISS-4 element and numerical results of the
post-buckling paths are presented. The computed equilibrium paths are compared to benchmark results using
the commercial finite element package ABAQUS, and strong asymptotic solutions of the differential equations.
The results document the good accuracy and reliability of the proposed modeling approach, and also highlight
the importance of multi-modal analysis when multiple buckling modes coincide as is the case in long plates,
shells and other optimized thin-walled structures.

1. Introduction

In the analysis of slender elastic structures, the numerical imple-
mentation of Koiter's asymptotic method [1] allows a reliable evalua-
tion of the post-buckling behavior. The method, its implementation
and application are under investigation to this day [2–7]. The
advantages of Koiter's asymptotic approach are apparent when multi-
modal buckling interactions are to be accounted for. Furthermore, the
sensitivity to imperfections, and therefore a realistic evaluation of the
load carrying capacity of the structure, can be studied in a computa-
tionally efficient manner by combining Koiter's asymptotic approach
with stochastic Monte Carlo simulations [8–12].

A finite element implementation of Koiter's asymptotic method was
developed by Casciaro et al. [13,14]. Initially, this method was applied
to planar beam frames [15,16] and simple plate assemblies [17]. The
use of a corotational formulation [18,19] allowed the simple extension
of the underlying linear model to the geometrically nonlinear regime

and permitted the straightforward computation of high-order strain
energy derivatives. As a result, the analysis could be extended to spatial
beam frames [20] and general shell structures [21]. Recently, the
formulation has been extended to laminate composite shell structures
[9], particularly to cylindrical shells [22] and folded plate structures
[10], and to cold formed steel structures [23]. By coupling the
asymptotic method with a Monte Carlo engine, the effect of random
imperfections on the first critical load of cylindrical shells in compres-
sion [22], and the erosion [24–26] of critical loads of cold formed
sections have been investigated [23]. Recently, the method has been
validated experimentally for composite beams [27] confirming the
good accuracy and reliability of the approach.

Here, a general finite element for the pre-buckling, buckling and
post-buckling analysis of variable-angle tow (VAT) plates using Koiter's
asymptotic approach is proposed. Due to the increased design space for
locally tailoring laminate stiffness, VAT composites are a promising
technology for further improving the structural efficiency of engineer-

http://dx.doi.org/10.1016/j.tws.2016.10.012
Received 22 April 2016; Received in revised form 29 September 2016; Accepted 10 October 2016

⁎ Corresponding author.
E-mail address: antonio.madeo81@unical.it (A. Madeo).

Thin–Walled Structures 110 (2017) 1–13

0263-8231/ © 2016 Elsevier Ltd. All rights reserved.

crossmark

http://www.sciencedirect.com/science/journal/02638231
http://www.elsevier.com/locate/tws
http://dx.doi.org/10.1016/j.tws.2016.10.012
http://dx.doi.org/10.1016/j.tws.2016.10.012
http://dx.doi.org/10.1016/j.tws.2016.10.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2016.10.012&domain=pdf


ing structures. In these variable stiffness structures, the fiber tows
within a layer are not restricted to straight trajectories but can describe
curvilinear paths. Numerous works have shown that tailoring the in-
plane stiffness over the plate planform allows pre-buckling stresses to
be redistributed to supported regions, thereby increasing the first
critical buckling load [28–35].

Wu et al. [36] showed that the fiber orientations of flat VAT
laminates can be tailored to reduce the stiffness knock-down in the
post-critical regime compared to straight-fiber laminates. Furthermore,
the optimal fiber paths for increasing buckling load also reduce the out-
of-plane post-buckling displacements [37]. An interesting application
of variable-stiffness composites is the reduction of the imperfection
sensitivity of shell structures. It is well known in the engineering
community that cylindrical shells are prone to collapse beyond the first
critical load, and as a result of this instability, shell structures are
extremely sensitive to geometric and loading imperfections. White and
Weaver [38] showed that this imperfection sensitivity can be effectively
eliminated by tailoring the fiber paths across the surface of cylindrical
shells. Hence, stable plate-like post-buckling responses in cylindrical
shells were documented for the first time.

Due to its modeling versatility and numerical robustness, most
modeling work on the buckling of VAT structures has focused on using
the finite element method (FEM) [30,39–42]. At the same time, the
pseudo-spectral differential quadrature method (DQM) has been
shown to be a fast, accurate and computationally efficient technique
for solving the variable-coefficient higher-order differential equations
for buckling [33,43] and post-buckling [35,44] of VAT plates and
cylindrical shells [45,46].

White et al. [45] were the first to implement Koiter's asymptotic
approach within a DQM framework. The asymptotic differential
equations for the pre-buckling, buckling and initial post-buckling
problem of constant stiffness curved panels were solved using the
generalized DQM, while the orthogonality condition of the buckling
and initial post-buckling mode shapes was enforced as an additional
constraint equation using an integral quadrature approach. The over-
determined system was then solved using the Moore-Penrose general-
ized matrix inverse operation. This general approach was used in the
optimization study of imperfection-insensitive cylindrical shells men-
tioned above, and by Groh and Weaver [46] in a minimum-mass
optimization study of VAT wing panels with static failure constraints.
Finally, Raju et al. [47] extended the numerical scheme beyond the
initial post-buckling regime, and used the approach as the basis for an
optimization scheme to minimize the end-shortening strain in the post-
buckling regime.

The starting point of the present implementation of Koiter's
asymptotic approach in the finite element method is the 3D shell
element MISS-4 [48–50]. The use of a corotational reference frame
allows the extension of the geometrically linear finite element into a
nonlinear context. The fundamental equations of Koiter's asymptotic
method are presented in Section 2. Derivations of the linear shell
element MISS-4 are discussed in Section 3, and its extension to the
geometrically nonlinear regime presented in Section 4. In Section 5, a
number of different test cases with different VAT stacking sequences
and loading conditions are presented and comparisons are made with
benchmark models. In particular, the results have been compared with
the Riks path-following algorithm [51] in the commercial code
ABAQUS [52] and with the implementation of Koiter's approach in
DQM [45]. Furthermore, this section highlights the importance of
multi-modal expansions in Koiter's approach. Finally, conclusions are
drawn in Section 6.

2. Nonlinear analysis of slender elastic structures

The starting point of Koiter's asymptotic approach is the total
potential energy functional Π u[ ], where u are the configuration
variables (i.e. displacements/stresses). In particular, we have

Π u Φ u λpu[ ] = [ ] − (1)

where Φ u[ ] is the strain energy, λ the load control parameter and p the
applied load. The solution to the problem is given by the stationarity
condition of the total potential energy

Π u[ ] = stat. (2)

which means that the first variation of the total potential energy must
vanish. Hence,

Π u δu Φ u δu λpδu δu′[ ] = ′[ ] − = 0 ∀ (3)

where the prime denotes the Frèchet derivative with respect to
configuration variable u, and the equilibrium Eq. (3) is generally
nonlinear. Using the finite element method, Eq. (3) can be rewritten as

u r u u r u s u pδ λ δ λ λ[ , ] = 0 ∀ [ , ] = ( [ ] − )T (4)

with uu = and pp = , where is a suitable interpolation operator,
and s u[ ] and p represent the internal and external load vectors,
respectively. The solution of Eq. (4), and therefore the equilibrium
path, can be obtained either by means of a path-following approach or
an asymptotic approach.

The path-following [51] approach is widely used as a solution
scheme because of its general applicability to a wide array of nonlinear
systems. Disadvantages include the computational cost, which is
directly related to the number of variables in the FEM discretization
(i.e. the dimension u); the need to perform separate analyses in the case
of small modifications (i.e. imperfections) of the load and/or geometry;
and difficulties associated with following post-critical branches at
coincident, or near-coincident, critical loads.

On the other hand, in the asymptotic analysis [1], the equilibrium
path is obtained in an approximate fashion through an asymptotic
expansion of parameters ξi for i m= 0… . Starting from a known
expansion point u λ{ , }0 0 , we have:
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where the superimposed (·) denotes differentiation with respect to ξ. By
invoking the fundamental lemma of the calculus of variations, the
nonlinear system of Eq. (4) can be rewritten as

r ξ λ 0[ , ] = (6)

with vector ξ collecting the ξi expansion parameters. The nonlinear
system Eq. (6) is generally defined by a reduced number of variables. In
practical contexts the expansion order m is of order 101. Once all
unknowns in Eq. (5) are determined for the so-called ‘perfect struc-
ture’, the solution for deviations in the assumed load and geometrical
imperfections only require the solution of Eq. (6). Thus, the reduced
order of the asymptotic method allows the straightforward computa-
tion of thousands of imperfections at low computational cost.

2.1. Koiter's approach fundamental equations: Casciaro's quadratic
algorithm

In the following, Koiter's asymptotic approach as proposed by
Casciaro [13,14] in the context of the FEM is employed. This
implementation is also know as the quadratic algorithm [13] and
has been developed over the last thirty years.

The analysis procedure can be summarized as follows:

– First, the fundamental path (pre-critical path) is assumed to be a
linear combination

u u uλ λ[ ] = +f
0 (7)

where u0 is an initial known configuration, and u ud dλ= / is computed
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