ELSEVIER

Contents lists available at ScienceDirect

Thin-Walled Structures

CrossMark

journal homepage: www.elsevier.com/locate/tws

Full length article Tests of aluminium alloy CHS columns with circular openings

^a School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
^b School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China

ARTICLE INFO

Article history: Received 23 June 2016 Received in revised form 5 September 2016 Accepted 20 September 2016

Keywords: Aluminium alloy Circular hollow section (CHS) Circular opening Effective area method Effective diameter method Flexural buckling Local buckling

ABSTRACT

This paper describes a test program on a wide range of aluminium alloy circular hollow section (CHS) columns with circular openings. A total of 27 specimens including 18 perforated CHS columns and 9 CHS columns were tested with uniform axial compression force applied to the pin-ended columns, which were fabricated by extrusion of CHSs using 6061-T6 and 6063-T5 heat-treated aluminium alloys. The influence of the column slenderness ratio, the plate slenderness ratio, the opening size ratio and the number of openings on the strength and behaviour of aluminium alloy CHS columns were carefully evaluated. The ultimate strengths, failure modes, load versus axial shortening curves and strain distributions along the circular openings of test specimens were all obtained from the experimental investigation. The test strengths of aluminium alloy CHS columns were compared with the design strengths predicted using the design rules given in the current design specifications. Furthermore, the test strengths of aluminium alloy CHS columns with circular openings were also compared with the design strengths calculated using the current design rules for perforated cold-formed steel structural members, which were derived based on the effective diameter method and effective area method. It is shown from the comparison that the design rules given in American Design Manual (AA) and Australian/ New Zealand Standard (AS/NZS) for limit state design of aluminium alloy structural members are generally appropriate but with comparatively high scatter of predictions; whereas the design rules given in Chinese Code are generally appropriate for the design of aluminium alloy CHS columns. In addition, the current design rules for perforated cold-formed steel structural members based on the effective area method are generally more accurate than those based on the effective diameter method for the design of aluminium alloy CHS columns with circular openings.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Aluminium alloy structural members nowadays are being used increasingly in structural engineering, such as space structures, claddings, curtain walls, bridges and many other practical applications owing to their high strength-to-weight ratio, lightness, corrosion resistance, attractive appearance and ease of production. However, the elastic modulus of aluminium alloy is approximately one third of that of carbon steel, which causes the aluminium alloy structural members to be easily failed by instability due to the loss of stiffness with low proportional limit stress. Furthermore, openings are often introduced in structural members to facilitate the building services such as pipeline, electric wire and heating conduits, as well as inspection and maintenance work of buildings. These openings are usually pre-punched perforations, which could lead to the redistribution of membrane stresses in the members

* Corresponding author. E-mail address: r.feng@hfut.edu.cn (R. Feng). and greatly influence the elastic stiffness and ultimate strengths of structural members. The behaviour of perforated structural members significantly depends on the shape, size, location and number of openings.

Many researches were conducted on the behaviour and design of cold-formed steel structural members with openings. Yu and Davis [1] investigated the structural behaviour of cold-formed steel compression members with a single circular or square hole in web or flange. The experimental and numerical investigations were performed by Feng et al. [2,3] on the axial strength of coldformed thin-walled channel sections at ambient and uniform high temperatures. The design rules were proposed based on the current design methods by verifying with the test and finite element analysis results. Moen and Schafer [4] investigated the relationship between elastic buckling and structural response of cold-formed steel columns with holes by conducting the compression tests on stub and intermediate cold-formed steel columns with and without slotted web holes. Furthermore, Moen and Schafer [5] also extended the direct strength method given in North American Specification (NAS) [6,7] to the design of cold-formed steel

Nomenclature on the s			on the second scenario
Tomen		PMC2	Design strength proposed by Moen and Schafer based
٨	Cross cross section area	* MS3	on the third scenario
л л	Effective area	PMGA	Design strength proposed by Moen and Schafer based
A _e	Ellective alea	1 MS4	on the fourth scenario
A_s	Total surface area of member	D	Design strength proposed by Moon and Schafer based
A_0	lotal surface area of opening	I MS5	on the fifth scenario
B_c, C_c, D_c	c Buckling constant	D	Design strength obtained from design formulae of
b _e	Effective width	P _{NAS}	North American Specification
D	Outer diameter of circular hollow section	D	North American Specification
D_e	Effective diameter	P_{NAS-A}	Design strength obtained from design formulae of
D_i	Inner diameter of CHS cross section		North American Specification based on effective area
d	Diameter of circular opening		method
Ε	Young's modulus	P_{NAS-D}	Design strength obtained from design formulae of
F_c	Allowable compressive stress		North American Specification based on effective dia-
F _{cy}	Compressive yield stress		meter method
F_L	Limit state stress	P_{ne}	Nominal axial strength for overall buckling
F_n	Nominal buckling stress	P_{nl}	Nominal axial strength for local buckling
f	Design value of compressive strength	P_{SD}	Design strength proposed by Shanmugam and
f_o	Characteristic value of 0.2% tensile proof stress		Dhanalakshmi
$f_{\rm v}$	Yield stress (0.2% tensile proof stress)	P_{SD-A}	Design strength proposed by Shanmugam and Dha-
k _c	Coefficient for compression member		nalakshmi based on effective area method
k_1, k_2, k_3	Set of coefficient	P_{SD-D}	Design strength proposed by Shanmugam and Dha-
L	Overall length of aluminium alloy column		nalakshmi based on effective diameter method
La	Effective length of aluminium alloy column	P_{sa}	Squash load
n	Number of hole	P _{STT}	Design strength proposed by Shanmugam et al.
n_{ν}	Safety factor for ultimate strength	P_{STT-A}	Design strength proposed by Shanmugam et al. based
n.,	Safety factor for yield strength		on effective area method
PAA	Design strength obtained from design formulae of	P _{STT-D}	Design strength proposed by Shanmugam et al. based
• 77	American Design Manual		on effective diameter method
PASD	Design strength obtained from design formulae of AS/	P_{μ}	Ultimate strength
- 730	NZS 1664.2:1997	P_{v}	Yield strength
Pcc	Design strength obtained from design formulae of GB	Pynet	Yield strength considering influence of holes
10	50429-2007	r	Radius of gyration of circular hollow section
Р	Overall buckling load	S	Distance between center of adjacent openings
P,	Local buckling load	t	Thickness of circular hollow section
P _{DC}	Design strength proposed by Dhanalakshmi and	w	Flat width of cross section
1 DS	Shanmugam	γ_{M1}	Partial factor
Pro .	Design strength proposed by Dhanalakshmi and	γmi	Resistance factor
I DS-A	Shapmuram based on effective area method	δ	Overall geometric imperfection
D	Design strength proposed by Dhanalakshmi and	E.	Flongation after fracture based on a gauge length of
I DS-D	Shapmuram based on effective diameter method	ej	50 mm
D	Design strength obtained from design formulae based	n	Strength ratio
PDSM	on direct strength method	r r	Reduction factor to allow for the weakening effects of
n	Design strength obtained from design formulae of FN	ĸ	welding
P_{EC}	Design strength obtained from design formulae of EN	~	Static ultimate tensile stress
D	1999-1-1:2007	0 _U	Static 0.2% tansile proof stress
P_{LSD}	Design strength obtained from design formulae of AS/	00.2	Stability coefficient
	NZS 1664.1:199/	φ	Stability coefficient
P_{MS1}	Design strength proposed by Moen and Schafer based	X	Strongth reduction factor
	on the first scenario	φ	Strength reduction factor
P_{MS2}	Design strength proposed by Moen and Schafer based		

columns with holes. The effect of perforation positions on the load carrying capacity of cold-formed steel structural members with lipped channel cross section subjected to axial compression was investigated by Kulatunga and Macdonald [8] using finite element analysis, which was verified by the corresponding experimental and theoretical results. In addition, the influence of perforation shapes on the buckling behaviour of cold-formed steel structural members with lipped channel cross section subjected to axial compression was also evaluated by Kulatunga and Macdonald [9] using both finite element analysis and experimental investigation. It should be noted that the aforementioned studies were all performed on perforated cold-formed steel structural members. Up to

the authors' knowledge, there is little research being carried out on the behaviour of aluminium alloy structural members with openings. The behaviour of aluminium alloy square hollow section (SHS) tubes with a circular hole in the webs subjected to web crippling was studied by Zhou and Young [10] using both experimental and numerical investigations. Feng and Young [11] conducted an experimental investigation on a wide range of aluminium alloy SHS stub columns with central circular openings. The appropriateness of the current design rules for perforated carbon steel structural members was evaluated for the design of aluminium alloy SHS stub columns with circular openings.

Design rules for aluminium alloy structural members are

Download English Version:

https://daneshyari.com/en/article/4928731

Download Persian Version:

https://daneshyari.com/article/4928731

Daneshyari.com