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A B S T R A C T

This paper presents a novel approach for the analysis of tunnels in the presence of uncertainties. The proposed
approach, referred to here as hybrid polynomial correlated function expansion (H-PCFE), performs a bi-level
approximation: first on global scale via polynomial correlated function expansion (PCFE) and second on local
scale via Kriging. While PCFE approximates the overall trend of the output response by using extended bases,
Kriging utilizes covariance function to track the local variations. Additionally, a novel homotopy algorithm is
utilized for estimating the unknown coefficients associated with the bases. The proposed approach has been
utilized for analysis of two benchmark tunnel problems. In order to demonstrate the superior performance of the
proposed approach, results obtained have been compared with those obtained using radial basis function (RBF)
and Kriging. For both the problems, the proposed H-PCFE based approach yields highly accurate results out-
performing both RBF and Kriging. Additionally, the proposed approach is computationally efficient as indicated
by the convergence plots that illustrate the rapid decrease in prediction error with the increase in number of
training points.

1. Introduction

In view of increasing population and scarcity of space on ground
surface, the trend of utilizing underground space is growing rapidly in
the form of road and railway tunnels, hydro-power tunnels/caverns
power houses, storage structures of petroleum products, defense am-
munitions, etc. Nowadays, many excavations for underground spaces
are carried out in the mountain regions. The geology of these regions is
extremely fragile and displays complex rock mass characteristics.
Naturally, exact determination of rock mass properties becomes ex-
tremely difficult, if not impossible. On the other hand, uncertainties are
present in tunnel support systems due to variation in lining thickness,
strength of lining concrete, number of rock bolts, rock bolt diameter,
etc. Hence, it is appropriate to analyze tunnels by considering the rock
mass and support system properties as uncertain (Oreste, 2005).

The most popular method for uncertainty quantification is the
Monte Carlo simulation (MCS) (Shinozuka, 1972; Rubinstein and
Kroese, 1981). In this method, the response statistics are computed
based on deterministic analysis at randomly generated sample points.
Although easy to implement, a large number of sample points are re-
quired for obtaining satisfactory results. Due to this reason, use of this

method is only limited to benchmarking newly developed tools for
uncertainty quantification. A number of improvements to the conven-
tional MCS, such as the Latin hypercube sampling (Seaholm et al.,
1986; Iman et al., 1980; Park, 1994) and stratified sampling (Ericson,
1965), have also been proposed. All these methods are collectively
known as simulation based approaches (SA). However, even the mod-
ified methods are often computationally expensive and hence, use of
these methods is limited to small-scale problems only.

An interesting alternative to the SA is the non-simulation based
approaches (NSA). Within the framework of NSA, the output response is
approximated by using some series expansion. Popular NSAs include
perturbation based approach (Wang and Mu, 2015; Gerstl, 1973; Wang
and Qiu, 2014) and Newman’s expansion (Gong et al., 2016). Unlike
SA, NSAs are highly efficient. However, results obtained using these
approaches are often erroneous, especially for problems involving
higher orders of nonlinearity.

A third category of methods that has become quite popular over the
last decade or so, is the surrogate based approaches. In this approach, a
surrogate model that replicates the actual model is first formulated
based on responses at some preselected training points. Once the sur-
rogate model is formulated, response statistics are computed by

http://dx.doi.org/10.1016/j.tust.2017.07.009
Received 13 March 2017; Received in revised form 11 July 2017; Accepted 14 July 2017

⁎ Corresponding author.

1 These authors have equal contribution.
E-mail address: csouvik41@gmail.com (S. Chakraborty).

Tunnelling and Underground Space Technology 70 (2017) 89–104

0886-7798/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/08867798
http://www.elsevier.com/locate/tust
http://dx.doi.org/10.1016/j.tust.2017.07.009
http://dx.doi.org/10.1016/j.tust.2017.07.009
mailto:csouvik41@gmail.com
http://dx.doi.org/10.1016/j.tust.2017.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tust.2017.07.009&domain=pdf


performing some suitable SA on the generated surrogate model.
Surrogate models that are quite popular in literature include poly-
nomial chaos expansion (Blatman and Sudret, 2011, 2010; Xiu and
Karniadakis, 2002), Kriging (Arfaoui and Inoubli, 2013; Kaymaz, 2005;
Biswas et al., 2016; Mukhopadhyay et al., 2017), radial basis function
(RBF) (Bollig et al., 2012; Fang et al., 2005; Anicic et al., 2016), least
square (Gavin and Yau, 2008; Lü and Low, 2011) and moving least
square (Goswami et al., 2016; Lü et al., 2017) based response surface
method, high-dimensional model representation (HDMR) (Ma and
Zabaras, 2010; Chakraborty and Chowdhury, 2013; Chowdhury and
Rao, 2009), etc. In this context, it is important to note that most of the
surrogate models are either based on global approximation of the error
norm (e.g. HDMR) or on local approximation of the error norm (e.g.
Kriging). As a result, the surrogate models are either efficient (global
approximation based surrogate models) or yield accurate results (local
approximation based surrogate models). Hence, it is necessary to de-
velop a surrogate model that is efficient as well as accurate.

This paper introduces a novel approach, referred to as hybrid
polynomial correlated function expansion (H-PCFE) (Chatterjee et al.,
2016; Chakraborty and Chowdhury, 2017b,c) for probabilistic analysis
of tunnels. Compared to conventional surrogate models, H-PCFE has the
following advantages:

● H-PCFE performs a bi-level approximation: first on a global scale by
using polynomial correlated function expansion (PCFE)
(Chakraborty and Chowdhury, 2015a,b, 2016a,b,c, 2017a;
Chakraborty et al., 2016) and second on the local scale by using
Kriging (Kaymaz, 2005; Biswas et al., 2016; Mukhopadhyay et al.,
2017). As a consequence, the proposed approach is efficient as well
as accurate.

● All the advantages of PCFE (Chakraborty and Chowdhury, 2015a,b,
2016a,b,c, 2017a; Chakraborty et al., 2016), such as the mean
square convergence, optimality in Fourier sense are intrinsically
present in H-PCFE.

● Unlike conventional surrogate models, H-PCFE is capable of treating
both dependent and independent random variables without the
need of any ad hoc transformation.

The primary objective of this work is to examine the performance of
H-PCFE in uncertainty quantification of tunnel responses. It is to be
noted that this is the first instance where such a hybrid approach has
been utilized for uncertainty quantification of tunnel responses.

The rest of the paper is organized as follows: In Section 2, a gen-
eralised framework for uncertainty quantification using surrogate
model has been discussed. Two popular surrogate models, namely RBF
and Kriging have also been reviewed in this section. In Section 3 the
fundamentals of H-PCFE have been discussed. Section 4 presents a
unified framework for uncertainty quantification in tunnel responses
using H-PCFE. In Section 5, two tunneling problems are presented to
illustrate the performance of the proposed approach. Various case
studies have also been reported in this section. Finally, the concluding
remarks are presented in Section 6.

2. Surrogate modelling for uncertainty quantification

Suppose = …X X X X( , , , )N1 2 is a vector with N number of input variables
(e.g., material properties, external load, support condition etc.), where

R∈ ⊂X D N (R denotes real number) and y represents the output response
(in this case the tunnel response). In actual problems, the relationship be-
tween the inputs and the output are often unknown and one often relies on
expensive numerical techniques such as finite element method for com-
puting the unknown response corresponding to a given set of inputs. Such
an approach, although suitable for deterministic problems, is often im-
practical for uncertainty quantification due to its high computational

demand. An interesting way to address this issue is to use surrogate models.
The primary idea of surrogate model based approaches is to replace the
actual costly model (often FE based) g by an efficient and accurate ̂g . All
subsequent operations are carried out based on ̂g . An algorithm detailing
the step-by-step procedure of surrogate based approach for uncertainty
quantification is shown in in Algorithm 1.

Algorithm 1. Steps for performing uncertainty quantification using
surrogate models

Initialize: Identify the input variables. Also identify the probability
density function of the input variables.
1. Generate training points by using some suitable design of

experiment scheme.
2. Obtain responses at the training points.
3. Train a surrogate model based on the inputs in step 1 and outputs at

step 2.
4. Perform MCS on the generate surrogate model for quantifying the

output uncertainty (probability density function and moments)
From above discussion, it is obvious that a surrogate model should have
two desirable properties. Firstly, the number of training points required
should be minimal as this directly influences the computational effort
associated with a surrogate model. Secondly, results obtained using a
surrogate model should be in close proximity of the actual model –
without which, the response probability density function (PDF) and
moments computed will be erroneous.

In the remainder of this section, two popular surrogate models (RBF
and Kriging) have been reviewed. Note that these two surrogates are
not the primary focus of this paper. Instead, they are used in this paper
for demonstrating the superior performance of the proposed approach.

2.1. Radial basis function (RBF)

Radial basis function (RBF) is a surrogate model which is quite
popular among researchers. RBF is often used to perform the inter-
polation of scattered multivariate data (Krishnamurthy, 2003; Hardy,
1971; Buhmann, 2000). The surrogate, ̂ Xg ( ) appears in a linear com-
bination of Euclidean distances, which may be expressed as

̂ ∑=
=

X Xg w ϕ x( ) ( , )
k

n

k k k
1 (1)

where, n is the number of sampling points,2 wk is the weight determined
by the least-squares method and Xϕ x( , )k k is the k-th basis function
determined at the sampling point xk . Various symmetric radial func-
tions XR ( )f are used as basis function. Popular radial functions, XR ( )f
includes:
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where c is the shift factor (normally considered to be the mean) and r is
the normalising factor (generally considered to be the standard devia-
tion). It is to be noted that RBF is not a regression technique. Rather,
RBF may be broadly considered as an interpolation technique. This is

2 Sample points and training points have been used synonymously in the context of
surrogate model.
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