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ARTICLE INFO ABSTRACT

Due to the extremely complicated hydrogeological environment, significant symptoms of water inrush can not be
detected accurately using normal exploratory methods, which produces hundreds of water inrushes occurred
during tunnel construction in karst area. This study aims to present a new water inflow prediction technique
without considering the relationship between hydrogeological features and water discharge rate. Therefore, the
nonlinear regression Gaussian process analysis is applied to develop a model for predicting water inflow into
tunnels. In order to meet the requirement of the data format of Gaussian process regression model (GPR), the
basic evaluation index system of water inflow into tunnels and corresponding criterion are set up and quantified
based on the statistical information of water inrush cases. To verify its feasibility, The GPR model is applied to
Zhongjiashan tunnel on Jilian highway in China. The results of the comparisons indicate that the prediction
results obtained from the GPR model are generally in a good agreement with the field-observed results. The
proposed Gaussian process, on the whole, performs better than the support vector machine (SVM) and artificial
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neural network (ANN) in predictive analysis of water inflow into tunnels.

1. Introduction

Water inrush is one of the typical geological hazards during tunnel
construction, resulting in huge casualties and economic loss. In recent
years, a large number of disastrous events associated with water inrush
in tunnels have been frequently reported in China and elsewhere (Song
et al., 2006; Shahriar et al., 2008; Ge, 2010; Lei, 2011; Zarei et al.,
2011; Li et al., 2013). Therefore, it is necessary to accurately predict
water inflow into tunnels and take some effective countermeasures to
assure the safety of tunnel construction.

Although it is difficult to accurately predict water inrush probability
and discharge rate of tunnels, many investigations consisting of analy-
tical, empirical, and numerical approaches have been presented within
the last few decades. Three classical analytical methods are often used
to estimate water inflow into tunnels (Kong, 2011): (1) Goodman
method (Goodman et al., 1965); (2) Heuer and Raymer method (Heuer,
1995; Raymer, 2001), and (3) IMS method (McFeat-Smith et al., 1985).
Analytical solutions can be rapid and useful. However, the analytical
solutions rely on given hydrogeological assumptions with simple cir-
cular or rectangular openings and they are unable to predict water in-
flow in complex hydrogeological conditions, such as fractured rocks (Li
et al., 2009). Besides, the tunnel water inflow problems in various
complicated geological conditions could be analyzed using numerical
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modeling (Hwang and Lu, 2007). Several conceptual models have been
proposed so far, including (1) equivalent porous media models, (2)
discrete fracture network models, and (3) hybrid models (Berkowitz,
2002; Li et al., 2009). Some other models have also been established to
assess the risk of water inrush by using the software RFPA®® and
COMSOL (Yao et al., 2012). However, numerical models require a real
conceptual model based on the input geological data. Moreover, they
either do not account for evaluating the risk of water inrush or fail to
profoundly reveal the quantifying relation between water inrush and
factors influencing it. Hence, using analytical and numerical tools to
predict possible tunnel water inflow often fails because of given hy-
drogeological assumptions and simplification of these heterogeneous
media. In fact, the whole geological condition can be considered as a
chaotic system. So, the characteristics of hydrogeology can not be de-
tected accurately using normal exploratory methods in general.
Currently, varied stochastic mathematics methodologies such as
attribute mathematical model (Li et al., 2013; Y. Wang et al., 2012),
analytic hierarchy process (Xu et al., 2011) and fuzzy extension theory
(Li et al., 2015) have been widely used to evaluate the risk of water
inrush in tunnels and coal mines. The evaluation results are basically
acceptable, though there is subjectivity in weights and criteria of eva-
luation indices. Additionally, some computational intelligence techni-
ques such as artificial neural network, support vector machines and the
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Gaussian process have been applied for landslide displacement (Grelle
and Guadagno, 2012; Rohmer and Foerster, 2011; Liu et al., 2014),
surrounding rock deformation (Feng et al., 2004; D.D. Wang et al.,
2012), surface settlement (Suwansawat and Einstein, 2006; Ovidio
et al., 2008; Ibrahim and Sadi, 2013), pipe failure rate (Tabesh et al.,
2009; Akbar et al., 2014) and other geotechnical engineering problems
(Anthony and Goh, 2007; Ocak and Seker, 2012; Liu et al., 2013).
Moreover, the use of artificial neural network and support vector ma-
chine for prediction of mine water discharge and water inflow into
tunnels were also reported in few related studies (Guo and Ma, 2010;
Ren and Xu, 2011; Liu, 2014). These approaches have shown the po-
tential ability of the corresponding methods to analyze the engineering
problems. Especially the Gaussian process model, which is suitable for
cases characterized by high dimension, small sample population, and
nonlinearity, it can apply the mean of the distribution as point pre-
dictions to avoid robust point predictions like that in ANN and SVM.
However, there is few research on the Gaussian process regression for
prediction of water inflow into tunnels.

The objective of this paper is to present the new computational
intelligence approach without considering the certain relationship be-
tween hydrogeological features and water inflow into tunnels. For this
purpose, the nonlinear regression Gaussian process analysis is applied
to develop a model for predicting water inflow into tunnels. Meanwhile,
the basic evaluation index system of water inflow into tunnels and
corresponding criterion are also set up and quantified. To verify its
feasibility, The GPR model as well as the other computational in-
telligence techniques are applied to Zhongjiashan tunnel on Jilian
highway in China to predict tunnel discharge rate.

2. Gaussian process model

Consider a data set S of n observations S = {(x;, y)|i=1, ...,
n},where x; is a D-dimensional input vector, and y; is a scalar output or
target. This set of input/output pairs will be referred to as sample points
or experimental points. For the sake of convenience, the inputs are
aggregated into a matrix X = [x7, X, ..., X,]. The outputs are likewise
aggregated, y = [y1, ¥a,..-,Ynl- The regression task is, given a new input
X, to obtain the predictive distribution for the corresponding ob-
servation y, based on S (Kang et al., 2015).

Gaussian process is a stochastic process, which provides a powerful
tool for probabilistic inference directly on distributions over functions
(e.g. O’Hagan, 1978) and which has gained much attention in recent
years (Rasmussen and Williams, 2006). A Gaussian process is the gen-
eralization of a Gaussian distribution. While the latter is the distribution
of a random variable, the Gaussian process describes a distribution over
functions. From function space view, the Gaussian process f(x) can be
determined by the corresponding mean m(x) and covariance functions
that are defined as follows:

m(x) = E(f (x)) (€8]

k(xx") = E((f (c)=m () ()—m(x'))) @

where k(x, x’) is the covariance (or kernel) function evaluated at x and
’

x’.
A Gaussian process f (x) can be represented as

f(x) ~ GP(m(x),k (x.x") 3)

Usually, for notational simplicity we will take the mean function to
be zero and the offsets and simple trends can be subtracted out before
modeling (Snelson, 2007; Kang et al., 2015).

2.1. GPs for regression

In GPs, we assume that the relation between the input vector and
the target is given by

Tunnelling and Underground Space Technology 69 (2017) 155-161

Fig. 1. Graphical model for GPR.

y=f0)+e C))

where f(x) represents an arbitrary regression function while ¢ is the
noise follows an independent, identically distributed Gaussian dis-
tribution with zero mean and variance o2, that is ¢ ~ N(0, ¢%).

Furthermore, we assume that f = [f(x}), f(x2), ..., f(xn)]T behaves
according to a Gaussian process, that is P(f|X = N(0,K), where K is the
covariance matrix with element K; = k(x; x;).

k(ax) kOax) - k(axp)
KX.X) = k(x?’xl) k(x?,xz) k(xzz,xn)

k(o) k(o) - k(nXn) (5)

where K(X,X) is the n X n symmetric and positive definite covariance
matrix, any of the matrix measures the correlation between x; and x;.
The element Kj; is the covariance between values of the latent functions
fx) and f(x;), and it encodes about the prior of our knowledge of
nonlinear process among latent functions.

Gaussian process regression (GPR) is used to compute the predictive
distribution of the function values f* at test points X* = [ x;%; x2"; ...;
Xm"1. A graphical model representation of a GP is given in Fig. 1. In the
figure, f; denotes f(x;). The set of latent function values f; indexed by the
set of indices x; is fully connected. Each of the connections represents
the correlation between two latent variables, which are defined by a
covariance function (Yuan et al., 2008; Kang et al., 2015).

The distribution of y conditioned on the values of f is given by an
isotropic Gaussian

POIf.X) = N(f.o;1)

where I is the identity matrix.
From the property of the Gaussian distribution, we can get the
marginal distribution of y as

POIX) = [ pOIfX)p(IX)df = NOK + ;1)

(6)

)

The joint distribution of the observed target values and the function
values at the test locations under the prior can be written as

[;] NN(O’[ D ®

where K(X,X.) is the n X 1 covariance matrix of test point X, and all the
imput points X; K(X.,X.) is the self-covariance matrix of test point X..
After completion of the learning process, the most likely output
value corresponding to X, can be predicted on the basis of the training
set according to bayesian theory. The purpose of using bayesian theory
is to update the probability distribution by the observed real data, i.e.,
the most likely predictive distribution f, can be deduced with the new
input X, the input values X and the observed target values y of training

K(X.X) + 01 K(XX,)
KX.X) KX.X)
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