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a b s t r a c t

Rock burst is a dynamic process of sudden, rapid and violent release of elastic energy accumulated in rock
and coal masses during underground activities. It can lead to casualties, to failure and deformation of the
supporting structures, and to damage of the equipment on site; hence its prediction is of great impor-
tance. This paper presents a novel application of Bayesian networks (BNs) to predict rock burst. Five
parameters —Buried depth of the tunnel (H), Maximum tangential stress of surrounding rock (MTS)
(rh), Uniaxial tensile strength of rock (UTS) (rt), Uniaxial compressive strength of rock (UCS) (rc) and
Elastic energy index (Wet)— are adopted to construct the BN with the Tree augmented Naïve Bayes clas-
sifier structure. The Expectation Maximization algorithm is employed to learn from a data set of 135 rock
burst case histories, whereas the belief updating is carried out by the Junction Tree algorithm. Finally, the
model is validated with 8-fold cross-validation and with another new group of incomplete case histories
that had not been employed during training of the BN. Results suggest that the error rate of the proposed
BN is the lowest among the traditional criteria with capability to deal with incomplete data. In addition, a
sensitivity analysis shows that MTS is the most influential parameter, which could be a guidance on the
rock burst prediction in the future.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Rock burst is a sudden and violent release of elastic energy
accumulated in rock and coal masses that occur during the under-
ground activities. It produce ejection of rock fragments, which
could lead to casualties, to failure and deformation of the support-
ing structures, and to damage of equipment (Brauner, 1994;
Ortlepp and Stacey, 1994; Dou et al., 2012; Cai, 2013). Its economic
consequences in the civil and mining engineering sectors are sig-
nificant. For instance, taking data from China as an example, more
than 13,000 accidents associated with rock burst, with casualties
exceeding 16,000, have been reported to have occurred in metal
mining between 2001 and 2007 (Zhou et al., 2012). Similarly, sig-
nificant problems have occurred in coal mining due to rock burst.
Two examples are Qianqiu Coal mine in Henan province (3rd
November, 2011, with 10 people killed and 75 trapped under-
ground), and Sunjiawan Coal mine in Liaoning Province (14th
February, 2005, with a serious gas explosion induced by rock burst
that killed 214 people) (Li et al., 2015). It is therefore expected that,
with the increasing complexity and depth of future underground

projects, additional challenges due to rock burst must be
addressed, so that there is a need to further test methods that
are commonly employed in current practice (see Table 1), and to
develop new multi-disciplinary methods to predict and control
rock burst hazards during mining and other underground activities
(Dou et al., 2012).

Rock burst prediction can be divided into two categories: long-
term and short-term predictions (Peng et al., 2010). Long-term pre-
dictions aim to preliminary qualify, during the initial stages of a
project, the likelihood of rock burst occurring during the develop-
ment of the project, so that can serve a guidance for decision
making in relation to excavation and control methods; whereas
short-term predictions aim to predict the location and time of rock
burst occurrence based on data —such as information about
drilling bits, micro seismic monitoring, and acoustic emission—
collected at the engineering site. (see e.g., Cai et al. (2001), Lu
et al. (2012) and Ma et al. (2015)) This work focuses on
long-term prediction of rock burst.

Data mining methods and artificial intelligence have often been
applied for long-term prediction of rock burst since the seminal
work of Feng and Wang (1994). For instance, Zhang et al. (2011)
employed a Particle Swarm Optimization-BP Neural Network;
Zhou et al. (2012) and Peng et al. (2014) proposed a rock burst
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classification based on support vector machines; Li and Liu (2015)
employed the random forest approach; and Liu et al. (2013)
employed cloud models with attribution weight. Others have
employed fuzzy technologies (see e.g., Liu et al. (2008), Guo and
Jiang (2009), Yu et al. (2009) and Adoko et al. (2013)) to infer rock
burst and its risks; and Bai et al. (2009) developed a Fisher discrim-
inant analysis model (FDA) for rock burst prediction in deep rock
engineering.

One of the main difficulties to predict rock burst with existing
methods is that data are difficult to obtain and often incomplete.
To overcome this problem, we propose a Bayesian network (BN)
(Pearl, 1986) to predict the occurrence of rock burst, as BNs have
the advantage of naturally dealing with the conditional depen-
dency relationships between the observed or unobserved random
variables of a statistical model, hence making them an interesting
choice in inference, classification and decision making problems
(Aguilera et al., 2011). Although BNs have been widely employed
in geotechnical engineering (Jimenez-Rodriguez and Sitar, 2006;
Medina-Cetina and Nadim, 2008; Xu et al., 2011; Huang et al.,
2012; Schubert et al., 2012; Song et al., 2012; Sousa and Einstein,
2012; Špačková et al., 2013; Borg et al., 2014; Feng and Jimenez,
2015), they have not yet been employed to predict rock burst.

2. Parameters chosen for the BN and data set description

2.1. Inputs in the BN

Several theories —such as the ‘strength theory’, the ‘rigidity the-
ory’ and the ‘energy theory’— were proposed since the 1950s to
explain the mechanism leading to rock burst occurrence, and for
its long-term prediction considered herein. After that, new ‘burst
liability’ theories that employ the elastic energy index, the burst
energy release index and the duration of dynamic fracture to pre-
dict rock burst were developed (Dou et al., 2006); and many other
criteria have been proposed to predict rock burst (see Table 1 for a
summary of the most commonly used ones). As most criteria only
considered no more than three input parameters and hence cannot
comprehensively utilize all the information about different param-
eters that can be collected nowadays, the proposed BN can be a
powerful approach to naturally deal with data sets comprising sev-
eral variables, as well as with missing data and with the condi-
tional dependency relationships between variables. Therefore,
using such previous works as guidance, we consider five parame-
ters that have potential influence on rock burst: buried depth of
the tunnel (H), maximum tangential stress at the surrounding rock
(MTS) (rh), uniaxial tensile strength of rock (UTS) (rt), uniaxial

compressive strength of the rock (UCS) (rc) and elastic energy
index (Wet). A brief description of these parameters, and about
the case with which information about them can be acquired, are
presented below.

2.1.1. Buried depth of the tunnel
Observations in real cases indicate that rock burst occurs

mainly in deep rock engineering and most works consulted during
the literature review agree in the observation that tunnel depth is
an important factor that can affect rock burst. Therefore, and
although in-situ rock stress would probably be a better predictor,
the lack of information about in-situ stress in many projects, as
well as the difficulties to accurately estimate in-situ rock stress
at early stages of a project without expensive and time consuming
in-situ tests, make us to select the buried depth of the tunnel as an
alternative. (Note also that, as the excavation depth increases, the
in-situ stress —which is often estimated by kH with k being the
unit weight of the rock mass— also increases.) H is also commonly
reported in case histories, so that information about H is only miss-
ing in 16 out of the 135 cases in the data set.

2.1.2. Maximum tangential stress of the surrounding rock
The maximum tangential stress is often used to predict the frac-

ture angle of rock (Aliha and Ayatollahi, 2012). For instance, Ryder
(1988), in his study of the influence of excess shear stress on rock
burst–prone conditions, concluded that the fault-slip and shear
fracture modes played a dominant role in Africa metal mines.
Whereas Qian (2014) proposed two modes of rock burst dynamic
failure: one ‘strain mode’ resulting from the rock failure and one
‘sliding mode’ caused by the fault-slip and shear fracture events.
Qian (2014) also analyzed two rock burst accidents in coal mines
in China, stating that the instability due to rock burst occurrence
could also be classified as ‘fault-slip’ and ‘shear fracture’ modes.
Therefore, previous studies clearly illustrate that the maximum
tangential stress can significantly influence the occurrence of shear
fracture instabilities in tunnels, hence becoming an important
parameter for rock burst prediction. It is also a widely available
parameter, as only 35 cases in the data set do not report this
parameter.

2.1.3. Uniaxial compressive and tensile strength
The uniaxial compressive strength and the uniaxial tensile

strength are two other parameters that can influence rock burst,
and they have often been applied for such task. Both are also com-
monly available parameters, and only one UCS and twelve UTS val-
ues are missing from the database.

2.1.4. Elastic energy index
The Elastic energy index, Wet , is defined as the proportion of

retained strain energy to that dissipated during a single loading-
unloading cycle under uniaxial compression (Kidybiński, 1981;
Singh, 1988). This parameter is related to the rock burst hazards,
and Wang et al. (1998) developed a rock burst prediction criterion
based on Wet .Wet values can be easily obtained through laboratory
tests as well as with direct (double-hole method) or indirect
(rebound method) in-situ evaluations. Only 18 cases (out of 135)
in the database do not report a Wet value or information to com-
pute it (Singh, 1988).

2.2. Description of the database

Many rock burst case histories comprising data from different
types of underground projects from all over the world have been
compiled by Zhou et al. (2012). Additional rock burst data of coal
tests have been collected from Zhao et al. (2007) and some unpub-
lished technical reports. Such sources have allowed us to compile a

Table 1
A summary of previous criteria for rock burst prediction.

Proposed by Equation Parameters Rock burst
discrimination

Russenes criterion
(Russenes, 1974)

rh/rc rh, rc >0.2

Hoek criterion (Hoek
and Brown, 1980)

rc/rh rh, rc 63.5

Rock brittleness
coefficient (Wang
et al., 1998)

rc/rt rc, rt 640

Depth prediction
critical (Hou and
Wang, 1989)

Hcr = 0.318rc(1 � l)/
(3 � 4l) c

rc, l, c N/A

Elastic energy index
(Wang et al., 1998)

Wet Wet >2.0

Note: rh is the maximum tangential stress of surrounding rock, MPa, rc is the
uniaxial compressive strength of rock, MPa, rt is the uniaxial tensile strength of
rock, MPa, l is the Poisson’s ratio, c is the weight of the rock mass, Wet is elastic
energy index.
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