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Abstract

Though the ensemble Kalman filter (EnKF) has been successfully applied in many areas, it requires explicit and accurate model and
measurement error information, leading to difficulties in practice when only limited information on error mechanisms of observational in-
struments for subsurface systems is accessible. To handle the uncertain errors, we applied a robust data assimilation algorithm, the ensemble
H-infinity filter (EnHF), to estimation of aquifer hydraulic heads and conductivities in a flow model with uncertain/correlated observational
errors. The impacts of spatial and temporal correlations in measurements were analyzed, and the performance of EnHF was compared with
that of the EnKF. The results show that both EnHF and EnKF are able to estimate hydraulic conductivities properly when observations are
free of error; EnHF can provide robust estimates of hydraulic conductivities even when no observational error information is provided. In
contrast, the estimates of EnKF seem noticeably undermined because of correlated errors and inaccurate error statistics, and filter divergence
was observed. It is concluded that EnHF is an efficient assimilation algorithm when observational errors are unknown or error statistics are
inaccurate.
© 2017 Hohai University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Water shortage and pollution are common problems
worldwide. For instance, in China a recent national water
quality survey has shown that only 38.7% of groundwater
from wells meets quality criteria for source water supplies (Yu
et al., 2014), and toxic organic chemicals threaten ground-
water supplies and human health in the U.S. (National
Research Council, 2013). Aquifer characterization is always

the first step to recognizing, managing, and protecting aqui-
fers. Though a lot of pore- and fracture-scale studies manage
to measure or characterize the exact geometries of porous or
fractured media at small scales and simulate the detailed dy-
namics of flow and transport behaviors at such scales (Dou and
Zhou, 2014; Chen et al., 2014), to date, small-scale techniques
are not applicable to field-scale problems in practice, like
aquifer characterization and modeling, because of a lack of
sufficient measurements. Unfortunately, due to considerable
spatial variability in geology and a lack of information,
affordable and accurate characterization of aquifer properties
is still a challenge. Efficient and accurate estimation of pa-
rameters in groundwater models is always one of the most
significant focuses of hydrology, since reliability and pre-
dictability of models are greatly dependent on model param-
eters. The parameter estimation or inverse problems in
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subsurface modeling are commonly considered ill-posed, and
the “non-uniqueness of inverse problems should be addressed
as uncertainty in the solutions” (Yeh et al., 2015) and may
sometimes be handled via optimization approaches (Carrera
and Neuman, 1986).

In recent decades, filter methods used in data assimila-
tion, which can combine and integrate different kinds of
data, have drawn growing attention from hydrogeologists.
These methods are capable of handling uncertainty with
insufficient information in the framework of Bayes' theorem
and improving the sensitivity of hydraulic variables (head,
concentration, etc.) to hydraulic parameters (conductivity,
dispersion coefficient, etc.) by introducing new kinds of data
rather than simply adding more measurements of the same
variable (McLaughlin and Townley, 1996); these are the
fundamental reasons for the popularity of filter methods. As
one of the most popular data assimilation techniques, the
ensemble Kalman filter (EnKF) has received broad recog-
nition, and has been verified, improved, and applied in many
areas, including hydrogeology (Evensen, 2003; Chen and
Zhang, 2006; Franssen and Kinzelbach, 2008; Sun et al.,
2009; Nan and Wu, 2011; Panzeri et al., 2013;
Assumaning and Chang, 2016). Applications show its
capability of incorporating observations of various types
from different sources to update the state of the model but
expose its significant deficiencies as well. The performance
of EnKF relies on accurate dynamic models of the system
and on the premise that all the noises are Gaussian white
noise whose statistical properties are clearly known. If the
premise of accurate models or statistical properties of noises
fails, the capability of the algorithm will deteriorate, and the
method may even result in ridiculous system states (Sun
et al., 2009; Nan and Wu, 2011). In practice, many mea-
surement noises are not white noise. They are often
correlative in time or space or even change with time. Thus,
a uniform error model is prohibitive in many situations,
let alone in the cases when their statistical properties
completely unknown (Wang et al., 2004). EnKF encounters
big problems in practice when only limited information on
error mechanisms of many observational instruments for
subsurface systems is accessible. This is especially true for
many newly developed hydrogeophysical techniques (Chung
and Lin, 2009; Tian et al., 2016). When water quality and
security issues draw greater attention of the public, charac-
terization of aquifer properties with a reliable risk control
becomes a significant challenge, since variability of hy-
draulic properties and accuracy of parameter estimation are
crucial for groundwater flow, solute transport, and incom-
plete mixing problems (Essaid et al., 2015; Tong et al.,
2015).

The H-infinity (or H∞) filter, which is used in signal pro-
cessing and control theory to achieve stabilization with guar-
anteed performance, has good robustness against uncertain
system noises (Shaked, 1990; Hassibi et al., 2000). It treats
uncertain inputs and noises as random perturbations with
limited energy and tries to minimize the H-infinity (H∞) norm

of the transfer function from perturbations to estimation errors
or to make it less than a given positive number. A lot of work
has been performed to develop and investigate theories and
algorithms of H-infinity in linear spaces or spaces which can
be transformed into linear spaces (e.g., Deng, 2013;
Yoneyama, 2013; Zhang et al., 2014). Lü et al. (2010) used
an H-infinity filter to estimate root zone water content by
assimilating soil moisture data in a one-dimensional linearized
Richards' equation.

To apply the H-infinity filter in nonlinear atmospheric
systems, Han et al. (2009) combined the Monte Carlo method
with the H-infinity filter and investigated the capability of the
ensemble H-infinity filter (EnHF) in two synthetic data
assimilation experiments. Luo and Hoteit (2011) proposed a
time-local version of EnHF which utilized only the current
state and observations of the system rather than the entire
available history and found the equivalency between their
algorithm and EnKF with covariance inflation. To the best of
our knowledge, EnHF has not been studied in hydrogeology
or parameter estimation fields. Accounting for its robust
performance in the case of insufficient information on model
or measurement errors, this algorithm may turn out to be a
powerful and practical tool for integrating hydrogeophysical
data into groundwater models and be worthy of more atten-
tion from the hydrogeology community. In this paper, we first
formulate groundwater flow models and the algorithms of
EnKF and EnHF, respectively. Afterwards, we examine the
ability of EnHF to estimate aquifer properties with observa-
tions subject to uncertain (spatially and temporally corre-
lated) errors, and compare it with that of the well-known
EnKF.

2. Methods

2.1. Groundwater flow simulation

Transient groundwater flow in confined and isotropic
aquifers is considered to satisfy the following basic equation:

V,½KðxÞVhðx; tÞ� þwðx; tÞ ¼ Ss
vhðx; tÞ

vt
ð1Þ

subject to the initial and boundary conditions:

hðx;0Þ ¼ H0ðxÞ ð2Þ

hðx; tÞ ¼ HDðx; tÞ x2GD ð3Þ

KðxÞVhðx; tÞ,nðxÞ ¼ Qðx; tÞ x2GN ð4Þ

where x is the spatial vector, t is time, K(x) is the hydraulic
conductivity, h(x,t) is the pressure head, w(x,t) is the exchange
between the element and outer space (source/sink term), Ss is
the specific storage, H0(x) is the initial head distribution in the
domain, HD(x,t) is the prescribed head on the Dirichlet
boundary segments GD, Q(x,t) is the prescribed flux across the
Neumann boundary segments GN, and n(x) is the outward
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