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h i g h l i g h t s

• Random variables in mutually exclusive contexts possess no joint distribution.
• They can be coupled, i.e., joint distributions can be imposed on them, non-uniquely.
• They can be characterized by what couplings they allow.
• In particular, this is a way to characterize selective influences and contextuality.
• Lack of joint distribution must not be confused with stochastic independence.
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a b s t r a c t

R. Duncan Luce once mentioned in a conversation that he did not consider Kolmogorov’s probability
theory well-constructed because it treats stochastic independence as a ‘‘numerical accident’’, while it
should be treated as a fundamental relation, more basic than the assignment of numerical probabilities. I
argue here that stochastic independence is indeed a ‘‘numerical accident’’, a special form of stochastic
dependence between random variables (most broadly defined). The idea that it is fundamental may
owe its attractiveness to the confusion of stochastic independence with stochastic unrelatedness, the
situation when two or more random variables have no joint distribution, ‘‘have nothing to do with
each other’’. Kolmogorov’s probability theory cannot be consistently constructed without allowing for
stochastic unrelatedness, in fact making it a default situation: any two random variables recorded under
mutually incompatible conditions are stochastically unrelated. However, stochastically unrelated random
variables can always be probabilistically coupled, i.e., imposed a joint distribution upon, and this generally
can be done in an infinity of ways, independent coupling being merely one of them. The notions of
stochastic unrelatedness and all possible couplings play a central role in the foundation of probability
theory and, especially, in the theory of probabilistic contextuality.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Almost 15 years ago R. Duncan Luce mentioned in a conversa-
tion that the Kolmogorovian probability theory (KPT) was unsatis-
factory because it treated stochastic independence as a ‘‘numerical
accident’’ rather than a fundamental relation. If I roll a die today in
Irvine, California, Duncan said, and on another day you roll a die in
Lafayette, Indiana, the fact that the two outcomes are independent
cannot be established by checking the multiplication rule. On the
contrary, the applicability of the multiplication rule in this case is
justified by determining that the two dice are stochastically inde-
pendent, ‘‘have nothing to do with each other’’.

This simple example (some may think too simple to be of great
interest) leads us to the very foundations of probability theory. Let
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us try to understand it clearly by comparing it to another example.
It is about a situation when I repeatedly roll a single die, having
defined two random variables:

A =


1 if the outcome is even
0 otherwise,

B =


1 if the outcome exceeds 3
0 otherwise.

These two random variables co-occur in the most obvious
empirical meaning: the values of A and B are always observed
together, at every roll of the die. Another way of looking at it, the
two random variables co-occur because they are functions of one
and the same ‘‘background’’ random variable Z , the outcome of
rolling the die. As a result, I can estimate from the observations
the probabilities Pr [A = 1 and B = 1], Pr [A = 1], and Pr [B = 1] (I
will use Pr as a symbol for probability throughout this paper): if the
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joint probability turns out to be the product of the two marginal
ones (statistical issues aside), the two events are determined to be
independent. I cannot simply make this determination a priori, as
it depends on what die I am rolling: if it is a fair die, A and B are not
independent, but if the distribution of the outcomes is

value: 1 2 3 4 5 6

pr.mass: 0
1
4

1
4

1
4

1
4

0,

then A and B are independent.
The difference between this example and that of Duncan Luce’s

is not in the number of the dice being rolled: my example would
not change too much if I roll two dice together, having marked
them ‘‘Left’’ and ‘‘Right’’, and define the random variables as

A =


1 if the Left outcome is even
0 otherwise,

B =


1 if the Right outcome exceeds 3
0 otherwise.

The realizations of A and B again come together, this time the
empirical meaning of the ‘‘togetherness’’ being ‘‘in the same trial’’,
or ‘‘simultaneously’’. Again, one can also say that the two random
variables co-occur because they are functions of one and the same
‘‘background’’ random variable Z , only this time it is the pair of
values rather than a single one. And again, I can estimate from
the observations the probabilities Pr [A = 1 and B = 1], Pr [A = 1],
and Pr [B = 1] and check their adherence to themultiplication rule.
Whether the two random variables are stochastically independent
is determined by the outcome of this test: the dice may very well
be rigged not to be independent.

In Duncan Luce’s example the situation is very different: the
outcomes of rolling the two dice in two different places at two
different times have no empirically defined pairing. If I define my
random variables as

A =


1 if on Tuesday in Irvine the outcome is even
0 otherwise,

B =


1 if on Friday in Lafayette the outcome exceeds 3
0 otherwise,

then I can estimate empirically the probabilities Pr [A = 1], and
Pr [B = 1] and find out, e.g., that they are (statistical issues
aside) 0.7 and 0.5, respectively. But I cannot estimate empirically
Pr [A = 1 and B = 1]: the two random variables are not recorded
in pairs. The experiment involves no empirical procedure by
which one could find which value of B should be paired with
which value of A. The two random variables therefore do not
have an observable (estimable from frequencies) joint distribution,
they cannot be presented as functions of one and the same
‘‘background’’ random variable. What one can do, however, is
to declare the two random variables stochastically independent,
based on one’s understanding that they ‘‘have nothing to do with
each other’’. If one does so, the validity of Pr [A = 1 and B = 1]
being equal to the product of two individual probabilities is true
by construction, requiring no empirical testing and allowing for no
empirical falsification.

This was Duncan Luce’s point: while the KPT defines stochas-
tic independence through the multiplication rule, at least in some
cases the determination of independence precedes and justifies the
applicability of the multiplication rule. In Duncan Luce’s opinion,
this warranted treating stochastic independence as a fundamen-
tal, ‘‘qualitative’’ relation preceding assignment of numerical prob-
abilities. This opinion is in accordance with the general precepts
of the representational theory of measurement. Thus, the authors
of the first volume of Foundations of Measurement (Krantz, Luce,

Suppes, & Tversky, 1971) sympathetically refer to Zoltan Domo-
tor 1969 dissertation in which he axiomatized probability theory
treating stochastic independence as a primitive relation. As far as
I know, however, it has not translated into a viable alternative to
the KPT.

I accept Duncan Luce’s example as posing a genuine founda-
tional problem, but I disagree that this problem is about defining
independence bymeans other than themultiplication rule. The po-
sition I advocate below in this paper is as follows.

1. Random variables that ‘‘have nothing to do with each other’’
are defined on different domains (sample spaces). Rather than
being independent (which is a form of a joint distribution),
they are stochastically unrelated, i.e., they possess no joint
distribution.

2. It is not that we do not know the ‘‘true’’ distribution, or that in
‘‘truth’’ they are independent butwe do not knowhow to justify
this. A joint distribution simply is not defined (until imposed by
us in one of multiple ways, discussed below).

3. The KPT is consistent with the idea of multiple sample spaces
and in fact requires it for internal consistency: the idea of
a single sample space for all random variables imaginable is
mathematically untenable.

4. Any given set of pairwise stochastically unrelated random
variables can always be coupled, i.e., imposed a joint distribution
on. This is equivalent to inventing a pairing scheme for their
realizations, and this can be done in multiple ways, coupling
them as independent random variables being just one of them.

2. On random variables, unrelatedness, and independence

2.1. Informal introduction

Stochastic unrelatedness is easy to distinguish from stochastic
independence: the latter assumes the existence of a joint
distribution, which means that an empirical procedure exists by
which each realization of one random variables can be paired
(coupled) with that of another. The most familiar forms of
empirical coupling are co-occurrence in the same trial and co-
relation to the same person. In the table below,

c : 1 2 3 4 5 . . .
X : x1 x2 x3 x4 x5 . . .
Y : y1 y2 y3 y4 y5 . . . ,

(1)

the indexing entity c can be the number of a trial (as in repeatedly
rolling twomarkeddice together) or an ID of a person (as in relating
heights and weights, or weights before and after dieting). The
random variables X and Y here have a joint distribution: one can,
e.g., estimate the probability with which X falls within an event EX
and (‘‘simultaneously’’) Y falls within an event EY ; and if

Pr [X ∈ EX&Y ∈ EY ] = Pr [X ∈ EX ] Pr [Y ∈ EY ] , (2)

for any two such events EX , EY , then X and Y are considered
independent.

Suppose, however, that the information about c in (1) does not
exist, and all one has is some set of values for X and some set
of values for Y . Clearly, now the ‘‘togetherness’’ of X ∈ EX and
Y ∈ EY is undefined. Although Pr [X ∈ EX ] and Pr [Y ∈ EY ] have
the samemeaning as before, Pr [X ∈ EX & Y ∈ EY ] is undefined, and
(2) cannot be tested. This is what stochastic unrelatedness is: lack
of a joint distribution. A pair of stochastically unrelated random
variables are neither independent nor interdependent, these terms
do not apply.

Think, e.g., of a list of weights in some group of people before
dieting (X) and a list of weights in some other group of people after
dieting (Y ): which value of X should be paired with which value
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