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• Analytic expressions for first three unconditioned and conditioned moments of decision time for pure drift-diffusion model.
• Semi-analytic expressions for first three unconditioned and conditioned moments of decision time for extended drift-diffusion model.
• Thorough analysis of the behavior of moments of decision time as a function of model parameters.
• Analysis of the effect of non-decision time on moments of reaction time.
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a b s t r a c t

Wederive expressions for the first threemoments of the decision time (DT) distribution produced via first
threshold crossings by sample paths of a drift-diffusion equation. The ‘‘pure’’ and ‘‘extended’’ diffusion
processes are widely used to model two-alternative forced choice decisions, and, while simple formulae
for accuracy, mean DT and coefficient of variation are readily available, third and higher moments
and conditioned moments are not generally available. We provide explicit formulae for these, describe
their behaviors as drift rates and starting points approach interesting limits, and, with the support of
numerical simulations, discuss how trial-to-trial variability of drift rates, starting points, and non-decision
times affect these behaviors in the extended diffusion model. Both unconditioned moments and those
conditioned on correct and erroneous responses are treated. We argue that the results will assist in
exploring mechanisms of evidence accumulation and in fitting parameters to experimental data.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we derive explicit expressions for the mean,
variance, coefficient of variation and skewness of decision times
(DTs) predicted by the stochastic differential equation (SDE)

dx = a dt + σ dW , x(0) = x0, (1)

which models accumulation of the difference x(t) between the
streams of evidence in two-alternative forced-choice tasks. An
example of such a perceptual decision-making task is one in which
a participant determines if the image on the screen hasmorewhite
or black pixels (e.g., Ratcliff & Rouder, 1998). Here drift rate a
and standard deviation σ are constants, dW denotes independent
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random (Wiener) increments, and dx is the change in evidence
during the time interval (t, t + dt). Decision times (DTs) are
determined by first passages through upper and lower thresholds
x = +z and −z that respectively correspond to correct responses
and errors, between which the starting point x0 is assumed to lie.
Thus,without loss of generalitywemay set a > 0, althoughwewill
also consider limits a → 0. Predictions of response times (RTs) for
comparison to behavioral data are obtained by adding toDTs a non-
decision latency, Tnd, to account for sensory and motor processes.

SDEs like Eq. (1) are variously called diffusion or drift-diffusion
models (DDMs); in Bogacz, Brown, Moehlis, Holmes, and Cohen
(2006) Eq. (1) was named the pure DDM to distinguish it from
Ratcliff’s extended diffusion model (Ratcliff, 1978), which allows
trial to trial variability in drift rates and starting points x0. See
Bogacz et al. (2006), Ratcliff (1978) and Ratcliff and Smith (2004)
for background on diffusionmodels, and note that several different
variable-naming conventions are used in parameterizing DDMs,
e.g. in Ratcliff (1978), Ratcliff and Smith (2004) andWagenmakers,
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Grasman, and Molenaar (2005) v and s replace a and σ , and
thresholds are set at x = 0 and x = a with x0 ∈ [0, a]; in Bogacz
et al. (2006) a and σ are named A and c.

Many of the following results have appeared in the stochastic
processes literature, or are implicit in it, and some have appeared
in the psychological literature (e.g. Grasman, Wagenmakers, & van
der Maas, 2009; Ratcliff, 1978; Wagenmakers et al., 2005). How-
ever, their dependence on key parameters such as threshold and
starting point and behaviors in the limits of low and high drift
rates have not been fully explored (see Wagenmakers et al., 2005
for some cases of a → 0). Nor are we aware of explicit deriva-
tions of third order moments. Here we provide these, and also
prove a Proposition that describes the structure of the coefficient
of variation (CV) for DTs predicted by Eq. (1), relating it to the
CV for a single-threshold DDM. We end by considering the ex-
tended DDM, introduced in Ratcliff (1978), showing how trial-to-
trial variability of drift rates and starting points affects the results
for the pure DDM and examining the effects of non-decision la-
tency on response times. We summarize the expressions for the
unconditioned and conditioned moments of DTs for the pure DDM
in Table 1. The MatLab and R implementation of analytic and
semi-analytic expressions for the conditioned and unconditioned
moments of DTs for the pure and extended DDMs studied here
is available at: https://github.com/PrincetonUniversity/higher_
moments_ddm.

Notation and units
We start by reviewing definitions and dimensional units, and

establishing notation. For a random variable ξ , we define the nth
non-central moment by E[ξ n

] and the nth central moment by
E[(ξ − E[ξ ])n]. The first central moment is zero and the second
central moment is the variance. The coefficient of variation (CV)
of ξ is defined as the ratio of standard deviation to mean of ξ ,
i.e., CV =


E[(ξ − E[ξ ])2]/E[ξ ]. Similarly, the skewness of ξ is

defined as the ratio of the third central moment to the cube of the
standard deviation of ξ :

skew =
E[(ξ − E[ξ ])3]

E[(ξ − E[ξ ])2]3/2
.

The variable x(t) and thresholds ±z in Eq. (1) are dimensionless,
while the parameters a and σ have dimensions [time]−1 and
[time]−

1
2 respectively. When providing numerical examples we

will work in secs. For a > 0 we define the normalized threshold
kz and starting point kx:

kz =
az
σ 2

≥ 0 and kx =
ax0
σ 2

∈ (−kz, kz); (2)

these nondimensional parameters will allow us to give relatively
compact expressions.

2. The single-threshold DDM

Eq. (1)with a single upper threshold z > 0 necessarily produces
only correct responses in decision tasks, but it is of interest because
it provides a simple approximation of the double-threshold DDM
when accuracy is at ceiling and errors due to passages through
the lower threshold are rare. Specifically, for a > 0, DTs of this
model with starting point x0 are described by the Wald (inverse-
Gaussian) distribution (Borodin & Salminen, 2002, Eq. (2.0.2); Luce,
1986; Wald, 1947):

p(t) =
z − x0

σ


1

2π t3
exp


−(z − x0 − at)2

2σ 2t


. (3)

The mean DT, its variance, and CV are:

E[DT] =
σ 2

a2
(kz − kx), Var[DT] =

σ 4

a4
(kz − kx), and

CV =

√
Var[DT]
E[DT]

=
1

√
kz − kx

,

(4)

and the skewness is

3
√
kz − kx

(= 3 CV). (5)

In the limit a → 0+, the distribution (3) converges to the Lévy
distribution, and in this limit none of themoments exist. However,
as shown below, moments of the double threshold DDM exist in
this limit.

The single threshold process has been proposed as a model for
interval timing (Balci & Simen, 2014; Luzardo, Ludvig, & Rivest,
2013; Simen, Balci, deSouza, Cohen, & Holmes, 2011; Simen,
Vlasov, & Papadakis, 2016). Interval timing, loosely defined, is the
capacity either to make a response or judgment at a specific time
relative to some event in the environment, or simply to estimate
inter-event durations. Classic timing tasks include ‘‘production’’
tasks, such as the Fixed Interval (FI) task, in which a participant
receives a reward for any response produced after a delay of a given
duration since the last reward was received (Ferster & Skinner,
1957), and discrimination tasks, in which two different stimulus
durations are compared to seewhich is longer (see Creelman, 1962
and Treisman, 1963 for historical reviews of early human timing
research). Production tasks can be modeled similarly to decision
tasks by a diffusion model: instead of accumulating evidence
about a perceptual choice, a timing diffusion model accumulates a
steady ‘‘clock signal’’ toward a threshold for responding (Creelman,
1962; Gibbon, Church, & Meck, 1984; Killeen & Fetterman,
1988; Treisman, 1963). The resulting production times, relative
to stimulus onset, are then comparable to perceptual decision-
making response times, typically yielding a slightly positively
skewed Gaussian density (Gibbon & Church, 1990). Simen, Rivest,
Ludvig, Balci, and Killeen (2013) show that the single-threshold
DDM can fit RT data from a variety of interval timing experiments
when the starting point is set to 0, drift is set equal to threshold
over duration (a = z/T , with T = target duration), and
normalized thresholds kz are set to high values, typically of order
20 (see Simen et al., 2011). In contrast, kz is usually much lower
in fits of typical two-choice decision data, typically of order 1.
Noise σ is typically fixed at 0.1 in the literature (Vandekerckhove
& Tuerlinckx, 2007) and fitted thresholds typically range from 0.05
to 0.15; see, e.g. Balci et al. (2011), Bogacz, Hu, Holmes, and Cohen
(2010), Dutilh, Vandekerckhove, Tuerlinckx, and Wagenmakers
(2009) and Ratcliff (2014). Despite this difference, DDM can be
fitted to both two-choice decision RTs and timed production RTs
in humans with suitably larger thresholds for timing (Simen et al.,
2016), suggesting that both tasks may be accomplished by similar
accumulation processes.

3. The double-threshold DDM: Unconditioned moments of
decision time

We now turn to the double-threshold DDM and derive
unconditioned moments of decision time. The DT distribution for
the double-threshold DDM may be expressed as a convergent
series (Ratcliff, 1978, Appendix), and successive moments of the
unconditioned DT (i.e. averaged over correct responses and errors)
may be obtained by solving boundary value problems for a
sequence of linear ordinary differential equations (ODEs) derived
from the backwards Fokker–Planck or Kolmogorov equation
(Gardiner, 2009, Chap. 5).
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