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The theory of convex polytopes is utilized.

The possibility of random utility representations for incomplete regular choice systems is explored.

Conditions similar to the Block/Marschak conditions for a complete choice system are derived.
The proposed technique depends on the Mobius function and Mébius inversion.
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Regular choice systems and their random utility representations are investigated. A generalization of the
derivation of the Block-Marschak conditions, based on the Mébius function of a partial order is presented.
The technique is demonstrated in connection with two examples. The first is similar to complete choice
data. In the second example a complete characterization of the ensuing polytope is obtained including a
procedure to explicitly derive a convex representation of a data matrix if it is in the polytope.
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1. Introduction

When studying human choice behavior it is obvious that people
are rarely consistent. If a decision can be in favor of alternative x
from a set of possible alternatives it often can be observed that
at another occasion which is quite similar to the first situation
alternative y is chosen with y # x. The reasons for this
behavior can be manyfold. The alternatives or stimuli can be almost
indistinguishable for the decider, or their value (utility) can vary
within the time elapsed between the decisions. This fact must not
be regarded as a nuisance or an error of the subject. Rather it can
be utilized when it comes to assigning numerical values to the
utilities or other attributes of the alternatives. Luce (1959) presents
an approach to this enterprise. Here, the probability of choosing x
is made proportional to the scale value assigned to x. Clearly, this
probability is not directly observable. However, it can be estimated
from paired comparison data, given the so called ‘choice axiom’,
(cf. Luce, 1959). The famous BTL-model can be derived in this way,
(Bradley & Terry, 1952 and Zermelo, 1929 exploited this idea before
Duncan Luce).

The random utility approach - going back to Thurstone (1927)
- has a different starting point. Instead of assigning numbers to
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the stimuli one associates random variable to them. These random
variables are thought of as reflecting the variability in the utility
a stimulus has for a subject or within a population of subjects.
Once this model is accepted the expectation of the random variable
is a natural candidate for a scale value. In the heyday of this
model a lot of effort was put into estimating the parameters of
the respective random variables, mostly under the assumption of
normal distributions. Torgerson (1958) is but one example of a
comprehensive account of this approach.

Data which can be utilized to carry through this program mostly
arise in paired comparison experiments. In this context one often
speaks of binary choice data. But there are other experimental
paradigms. We mention a few in later sections. A more modern
treatment of random utility focuses on necessary and sufficient
conditions data must fulfill to be representable by random
variables. The older literature focused on algorithms to estimate
the expected values under normality conditions. It came as a
surprise that even without distributional assumptions data must
satisfy severe and testable restrictions to render this approach
feasible. In the case of binary choice data these investigations
lead to very difficult mathematical problems. However, it seems
that these difficulties are not only restricted to binary choice. It
took some time to recognize the geometric flavor of this way
of thinking. The first seems to be Cohen and Falmagne (1990),
who formulated this program (the paper was written in the
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late seventies long before its publication cf. Marley, 1990). Suck
(1992) brought the full power of the theory of polytopes to bear
on this problem. Since then several related problems have been
discussed along these lines, see e.g., approval voting (Doignon
& Regenwetter, 1997), interval orders, Regenwetter and Marley
(2001), best worst choice (Marley & Louviere, 2005) and many
more. Marley (1990) and Suppes, Krantz, Luce, and Tversky (1989,
ch. 17) give comprehensive overviews of the state of the art before
the geometric impact was fully recognized, while Fishburn’s (1992)
overview focuses on the geometry of the (binary) choice problem.
Some results can be found in Koppen (1995). The geometric
description of the so called ‘linear ordering polytope’ was already
an issue in other branches of mathematics such as polyhedral
combinatorics. In this literature the random utility aspect is not
in the focus. These papers focus on applications to optimization
problems.

The literature on random utility in general is scattered
over very different special fields such as economics (McFadden,
1981), decision theory (Luce, 2000), psychology (Colonius, 1984),
and others. Block and Marschak (1960) and Marschak (1960)
seem to have initiated the search for necessary and sufficient
conditions which eventually lead to the geometric formulation
now prevailing.

Various generalizations have been regarded, see Niederée
and Heyer (1997). Suck (2002) investigates the construction of
random variables and addresses the question of characterizing
binary choice data which allow the construction of independent
representing variables. Furthermore, instead of forced choices,
(which means the decider must choose exactly one alternative
from an actual choice set) other means of data collection have
been used. Suck (2005) deals with the random utility aspects
of categorical judgments which are in practice a lot more
parsimonious.

In Section 2 we introduce the basic concepts of choice systems
and give a few definitions from geometry, in particular from
the theory of polytopes. Section 3 deals with the derivation of
distributions with the help of a partial order associated with an
incomplete choice system. From this we are able to formulate
in Section 4 analogues of the Block-Marschak conditions. This is
however only an intermediate step in finding the final random
utility representation. Therefore, in Section 5 a further step is
described which finally provides the desired result. In Section 6 the
whole procedure is applied to two examples.

2. Basic properties of regular choice systems

The structure we are investigating in this paper consists of
a finite set A of stimuli, or objects, commodities, items of a
questionnaire, situations, events which are more or less desirable,
more or less easy to perceive, remember, recognize, or more or
less likely to happen, etc. They have these features with respect to
the members of some population or the subjects of an experiment.
These persons are presented with some subset X € A and choose
x € X with probability p(x, X). Usually the choice set X is varied
within a particular investigation over some subset X of the power
setof A, i.e., X C 2%. Furthermore, in experiments of this kind often
the subjects are forced to choose exactly one element of the set X.

In the context of the present investigation we also assume that
the probability for choosing x decreases when the choice set is
extended. Such choice systems are called regular. There may be
rare cases of violations of this property. They are not considered
here.

We summarize these properties in the following definition.

Definition 1. A system (A, X, p) is called a regular choice system
if A is a nonempty finite set, X a nonempty subset of subsets of A
with at least two elementsand p : A x X — [0, 1] satisfying

() 2 xex P X) =1
(ii) Ifx e X C Y, thenp(x, X) > p(x,Y).

X is called the set of choice sets. When X consists of all subsets
with at least two elements, (A, X, p) is called complete, otherwise
incomplete. In the ‘binary’ case X consists of the two-element
subsets of A.

An experiment utilizing regular choice systems consists of
determining or estimating the probabilities p(x, X) for all X € X.
In practice the choice sets X are in most cases the two element
subsets of A. This technique of data collection is known under
the name ‘paired comparisons’. One way of evaluating such data
replaces the stimuli a € A by random variables U, with the
property

p(a, {a, b}) = P(Us > Up). (1)

This equation is called the ‘binary case’ of a random utility
representation. In analogy to the binary case a random utility
representation for an arbitrary choice system consists of random
variables U, for each a € A fulfilling

px,X) =P <Ux > max {Uy}> forallX € X (2)
yeX—{x}

instead of Eq. (1).
We summarize this approach in a formal definition:

Definition 2. Given a regular choice system (A, X,p). A set
{Us; a € A} of jointly distributed random variables is called
a random utility representation (abbreviated RU-representation)
when it satisfies Eq. (2).

Although rather general, the requirement of the existence of
the random variables imposes severe restrictions on the choice
probabilities p(x, X). In other words, there are many data sets
which do not admit a random utility representation. It is the
aim of many theoretical investigations on random utility theory
- including the present one - to formulate conditions which
render this approach feasible, i.e., to find necessary and sufficient
conditions for a choice system to be RU-representable in the
sense of Eq. (2). Nowadays this question is handled by looking
for facets of a polytope which is naturally associated with the
structure (A, X, p). The basis for this geometric reinterpretation of
choice data is the following theorem essentially due to Block and
Marschak (1960):

Theorem 3. A structure of choice probabilities is RU-representable if
and only if there exists a probability Q on the set S, of rankings (or
permutations) of n objects such that forall X € X and allx € X

px.X)= Y Q)

oeSx,X)

where S(x, X) is the set of rankings with x preceding all elements in
X — {x}.

Proof. The proof for complete choice systems (which is the part
due to Block/Marschak) can be found in Suppes et al. (1989). The
general case follows immediately when we observe that (A, X, p)
is RU-representable if and only if it can be extended to a complete
choice system. W

An immediate consequence of Theorem 3 is that RU-
representability implies regularity. Therefore we focus on regular
choice systems.

The characterization of random utility models by the possibility
to assign probabilities to the rankings in S, has produced
conditions on the choice probabilities. However, it is by no means
easy to find some let alone to find a minimal set of conditions. But a
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