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a b s t r a c t

This paper uses the tool of the logarithmic derivative function (LD) to ascertain the functional form of
the risky weighting function for probabilistic outcomes. The LD function of a continuous function g(x)
is defined as the ratio of the derivative of a function at x to the function itself. The LD is particularly
sensitive to changes in the slope of a function thus making it an effective way of distinguishing functions
with similar forms. The present study replicates earlier analyses of the LD candidates for the risky
weighting function for positive binary gambles and extends the program of study to include negative
binary gambles. Empirical estimates for LD values were elicited in an experiment in which participants
matched gambles with positive outcomes or with negative outcomes. The risky weighting function for
positive and negative gambles differed significantly only in the low range of probability values where
p ≤ 0.15. Several candidate models were shown to be incompatible with the observed LD pattern across
both types of gambles. Other candidates had a functional form thatwas similar to the observed LD pattern,
but systematically misfit the observed data in one or more regions of the curve. Of the models that
predicted the right shape, only one – the Exponential Odds function ω(p) = exp


−s (1−p)b

pa


– showed

a random error pattern. The Exponential Odds function was also the only candidate function with best-
fitting parameters that differed between positive and negative gambles and thereby picking up on an
important difference between the two gamble types.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many different economic decisions have costs and are associ-
ated with potential consequences. As such, choices with potential
gains and losses can bemodeledwith gambles. If we believe for any
reason that the value of a gamble is worth more than its cost, then
we are likely to play that gamble. Thus, understanding the per-
ceivedworth of a gamble is an important problem for bothpsychol-
ogy and economics.Moreover, an individual’s subjectiveweighting
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of probability is more predictive of choices than the actual prob-
ability associated with an outcome (Kahneman & Tversky, 1979).
In his famous paradox, Allais (1953) produced a case in which it
would be reasonable to make different choices in two situations
that were functionally identical. Allais proposed a pair of proposed
gambles that differed only in that one gamble had a 1% chance
larger chance that the gambler would walk away empty-handed.
That difference of 1% looms largewhen choosing between a certain
gain and a 99% chance of gain but relatively small when choosing
between a10% chance of gain and an11% chance of gain, evenwhen
the monetary value associated with each outcome is the same. Al-
lais’s thought experiment has since been borne out experimentally
(e.g., Chew & Waller, 1986). Thus, it is the extent to which we be-
lieve that we can win a gamble and not the actual probability that
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we can win that will determine whether or not we choose to play.
Alternatively, wemight actually perceive the probability values for
a gamble but nonetheless do not weight an outcome simply by the
probability for the outcome. In either case it has proven valuable
to introduce a functional transform of probability as the weighting
function of an outcome utility (Tversky & Kahneman, 1992). The
function of objective probability is called here the risky weighting
function and is denoted asω(p). By using a nonlinear risky weight-
ing function the problem of Allais paradox can be circumvented.

Risky weighting functions assume that an individual will
reliably transform different probabilities across the interval from
0 to 1 in consistent ways between choices. One requirement of the
functional form of the risky weighting function is that it be able to
capture the consistent finding that individuals tend to overweight
small probabilities and to underweight large probabilities.1 If
we denote a binary gamble where outcome of V1 occurs with
probability p, otherwise outcome V2 occurs, as G(V1, p, V2), then
a generic representation for the gamble utility is given in Eq. (1).

U(G) = ω(p)u(V1) + [1 − ω(p)]u(V2). (1)

In essence, (1) is a modification of the expected utility model
where the risky weighting function replaces the probability
weighting of the outcome utilities, u(V1) and u(V2). Please note
that this representation does not require any assumptions of
specificmodels of risky decision-making (e.g., Cumulative Prospect
Theory as proposed by Tversky & Kahneman, 1992) but merely
states that the perceived utility and risk are (a) not necessarily
equivalent to their respective subjective value and probability
and (b) that the overall utility and risk of a binary gamble are
entirely apportioned to the two options. Chechile and Barch (2013)
delineated three assumptions about any rational risky weighting
function, i.e. (1) ω(p) = 0 if p = 0, (2) ω(p) = 1 if p = 1, and (3)
ω′(p) > 0 for p. They identify irrationalities if these properties of
the weighting function are violated.

There are a number of candidatemodels for the risky weighting
function, and since they all are meant to fit similar empirical data,
they tend to have similar functional forms. Fig. 1 shows two such
candidates: the Prelec (1998) model

ω(p) = e−s(− ln(p))a (2)

and the Goldstein and Einhorn (1987) model

ω(p) =
spa

spa + (1 − p)a
. (3)

With the respective parameterizations of the two functions as
plotted in Fig. 1, the plots of the function are only perceptibly dif-
ferent in the range of small probabilities – and even there are quite
similar – and thus it would seem that both should be satisfactory
to model observed patterns of perceived probability.

However, the value of risky weighting functions goes beyond
data-fitting. Risky weighting functions are derived based on the
assumption of principles of decision-making. For example, the
Prelec function is based on an assumption that resolves problems
of the class of the Allais functions (the principles behind each of
the candidate models will be discussed in Section 2). Thus, if we
can discriminate between these similar functions, we can test the
relative validity of the underlying principles of decision-making.

Naturally, this discrimination is difficult. It is possible to use
statistical model selection techniques to compare model fit. For

1 Some candidates for the risky weighting function, for example, the Prelec
function (Prelec, 1998) can, given certain parameter values, also describe the
opposite pattern were it observed. This pattern was not observed for any of the
participants in the current research, and is rarely discussed in the experimental
literature.

Fig. 1. Similarω(p) functions: Prelec (solid; Eq. (2))with a = 0.65 and s = 1.05 and
Goldstein–Einhornwith a = 0.68 and s = 0.78 (dashed; Eq. (3)). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

example, Stott (2006) analyzed 256 combinations of candidate
functions (he also included a small class of error terms, which are
predicated on the idea that individuals may not always correctly
indicate the choices they actually prefer) and evaluated model
fit with the Akaike Information Criterion (Akaike, 1973). This
approach accounts for a great number of possible functions, but
it has its shortcomings: model selection statistics may not agree
across models (Myung, 2000) and they assess quantitative but
not qualitative aspects of the model fit (Chechile & Barch, 2013).
Other investigators have used non-parametric elicitations of risky
weighting functions. For example, Abdellaoui (2000) compared
prospects with five different probabilities (1/6, 2/6, 3/6, 4/6, and
5/6) to certain outcomes. This method does not stipulate a utility
function, providing for direct study of risk perception, but this
approach is vulnerable to Allais-types paradoxes (Von Nitzsch &
Weber, 1988), as outcomes that are certain tend to elicit choice
behavior that is distinct from choicesmade under risk. Comparison
between two risky choices is thus preferable. Bleichrodt and
Pinto (2000) used a paradigm that asked participants to compare
choices of different probabilities, but tested only five probability
values (0.10, 0.25, 0.50, 0.75, and 0.90), limiting the precision
of their investigation. A preferable approach would be one that
can discriminate among small differences between functions, does
not require an assumed utility function, and one that compares
judgments made in risky choice to other judgments made in the
same domain.

For those reasons, Chechile and Barch (2013) used transforma-
tions of candidate models for the risky weighting function that
are easier to differentiate, taking the logarithmic derivative η(p)
of each. The logarithmic derivative of a function is the ratio of the
derivative of a function at a given point to the function itself at
that point; in the case of a risky weighting function of objective
probability p, it is η(p) =

ω′(p)
ω(p) . Chechile and Barch (2013) proved

a number of general properties about the logarithmic derivative
(LD) function of ω(p). For example, it was shown that (1) the LD
function diverges as p approaches 0, (see their Theorem 2), (2) the
LD function is positive for all p (see their Theorem 1), (3) ω(p) =

exp

−

 1
p η(y)dy


(see their Theorem 3), and (4) the LD function

cannot be monotonically increasing for all probability values (see
their Theorem 4).

Because the LD function measures the rate of change of a
function relative to the function itself over each point of the
domain of the function, it is especially sensitive to small changes
in slope, which is precisely what is required to differentiate
between functions with similar functional forms. Fig. 2 is a
plot of three logarithmic derivative functions of candidate risky
weighting functions: clear differences arise after the functions
are transformed. Although the risky weighting function for these
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