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h i g h l i g h t s

• A novel method for estimating subjective value from choice behavior is proposed.
• The proposed method employs a new choice task using probabilistic feedback.
• The proposed method performs the model-based estimation based on a reinforcement learning theory.
• The validity and limitations of the proposed method are investigated.
• The proposed method is demonstrated using actual choice data from rats.
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a b s t r a c t

Evaluating the subjective value of events is a crucial task in the investigation of how the brain implements
the value-based computations by which living systems make decisions. This task is often not straight-
forward, especially for animal subjects. In the present paper, we propose a novel model-based method
for estimating subjective value from choice behavior. The proposed method is based on reinforcement
learning (RL) theory. It draws upon the premise that a subject tends to choose the option that leads to
an outcome with a high subjective value. The proposed method consists of two components: (1) a novel
behavioral task in which the choice outcome is presented randomly within the same valence category
and (2) the model parameter fit of RL models to the behavioral data. We investigated the validity and
limitations of the proposed method by conducting several computer simulations. We also applied the
proposed method to actual behavioral data from two rats that performed two tasks: one manipulating
the reward amount and another manipulating the delay of reward signals. These results demonstrate
that reasonable estimates can be obtained using the proposed method.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Subjective values (or utilities) assigned to positive or negative
events by living systems in general differ from their objective value
(e.g., amount of money). Rewards with larger amounts and less
delay are basically preferable, but the subjective values are not
linearly related to objective, measurable values such as amount
and delay (e.g., Kahneman & Tversky, 1979). Investigations into
the valuation systems of living systems have gained significant
attention in various fields such as psychology, neuroscience, and
psychiatry (e.g., O’Doherty, 2014; Rangel, Camerer, & Montague,
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2008). For example, some psychiatric disorders (e.g., depression)
can be characterized by altered subjective values (for a review,
see Chen, Takahashi, Nakagawa, Inoue, & Kusumi, 2015). Thus,
the validity of animal models of a psychiatric disorder may be
evaluated based on the subjective values of the subjects.

Traditional econometricmethods of estimating subjective value
cannot be applied to animals because they rely on verbal instruc-
tion (e.g., Kable & Glimcher, 2007; Kahneman & Tversky, 1979).
Several methods have been used to estimate subjective values
or preferences in animal studies. A typical procedure is to have
the subjects learn the relationship between a specific response
(e.g., pressing a lever or remaining in a specific location) and the
resulting outcome, from which the subjective value is measured
(e.g., Green & Estle, 2003). This approach requires sufficient train-
ing so that the animals learn the relationships among all of the
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items and the choice behavior reaches the steady state. Another
common method utilizes the law of how animals distribute their
responses depending on the reinforcement, i.e., the matching law
(Miller, 1976). Both approaches rely on the pairwise comparison of
preferences for two items. Thus, to measure the subjective values
of several items, the researcher must examine the preferences for
multiple combinations of items. This method requires much time
and sophisticated experimental considerations.

In the present study, we propose a novel method for estimating
subjective values especially from animal behaviors using novel
behavioral tasks and reinforcement learning (RL) model-based
analysis. RL is usually formulated as an algorithm that attempts to
maximize the total reward that a decision-maker can obtain.
Recent studies, however, have begun to use the RL framework
to model human behavior that does not necessarily lead to re-
ward maximization (Neiman & Loewenstein, 2011; Shteingart
& Loewenstein, 2014). For example, basketball players tend to
choose to make a 3-point shot immediately after an experience
of success; however, this dependence decreases the success rate.
This choice behavior is modeled using an RL model (Neiman
& Loewenstein, 2011, 2014). Additionally, RL models have been
important data analysis tools for experiments involving value-
based, decision-making tasks (Corrado & Doya, 2007; Daw, 2011;
O’Doherty,Hampton & Kim, 2007).

Standard RL theory assumes that there is an increased probabil-
ity of choosing an option that has been reinforced in the immediate
past. The magnitude of dependence decays exponentially with the
passage of time (trials) (Katahira, 2015). The main idea of the
proposed method is to utilize this property. The RL theory also
assumes that the larger the subjective value of an outcome, the
more frequently the decision-maker repeats the same choice in
the immediate future. Using the model parameter fit of RL models
to trial-by-trial data, one can effectively estimate the subjective
values of various decision-outcomes. The proposed method takes
advantage of transient, trial-level dynamics of behavior, whereas
other conventional methods examine only steady-state behavior.
By using the transient effect of outcome on subsequent choices, it
can estimate the value of multiple types of outcomes in a single
experiment consisting of only two options.

The remainder of this paper is organized as follows. First, we
describe the proposed method, which consists of the novel exper-
imental design and RL model-based analysis. Next, we examine
the validity and several properties of the proposed method based
on synthetic data. We then apply the proposed method to actual
behavioral data from rats. In the demonstration, we examined the
rats’ subjective values regarding amounts of rewards and delays of
the reward (and no-reward) signal. Finally, we discuss the advan-
tages and limitations of the proposed method.

2. Proposed method

The proposed method consists of novel experimental tasks and
RL model-based trial-by-trial analysis of behavioral data. In the
following, we describe the basic task structure, the RL models, and
the statistical analysis procedure.

2.1. Basic task properties

The proposed choice task has the following structure. First, the
outcome of choice (decision-outcome) should contain at least one
appetitive outcome. This point is particularly crucial in animal
studies to ensure that there is an incentive that will motivate
animals to engage in the task. Second, the task must have con-
tingency between the valence of outcome (appetitive, neutral, or
aversive) and the animal’s choice, as in conventional decision-
making tasks. Contingency is required because it provides the

animal with an incentive to learn the value of its actions. Within
the outcome valence, however, the outcomes may be randomly
chosen, irrespective of the animal’s choice. Third, the contingency
between choice and outcome valence must change during the task
so that the animals’ choice does not convergewith the sameoption.
Although a class of RL models, as employed in the present study,
does not converge to deterministic choice behavior, actual animals’
choice behavior often becomes deterministic if they are exposed to
the constant contingency condition. This also occurs with other RL
models, such as actor-critic learning (Sakai & Fukai, 2008). Using
dynamic changing contingency prevents subjects from converging
to a deterministic choice behavior, which is less useful for estimat-
ing subjective values. Specific task examples are presented in the
following simulation and in experiments using rats.

2.2. Reinforcement learning model

In this section, we introduce RL models (Sutton & Barto, 1998).
Specifically, we consider several variants of Q-learning with a
single state (Watkins & Dayan, 1992), which is the model most
commonly used in the model-based analysis of choice behavior.
The model assigns each action an action value denoted as Qi (t),
where i is the index of the action and t is the index of the trial.
In the common setting, the initial action values are set to zero,
i.e., Qi (1) = 0 for all i. Based on the outcome, the action values
for the action i are updated as follows:

Qi (t + 1) = Qi (t)+ αL (r (t)− Qi (t)) (1)

where αL is the learning rate that determines the degree to which
the model updates the action value depending on the reward
prediction error, r (t) − Qi (t). The range of the learning rate is
restricted between 0 and 1. For the unchosen action option j (i ̸= j),
the action value is updated as follows:

Qj (t + 1) = (1− αF )Qj (t) , (2)

where αF is the forgetting rate (Erev & Roth, 1998; Ito & Doya,
2009). In a typical RL model, the action value of the unchosen
option is not updated. This convention can be represented by
setting αF = 0. We call this the standard Q-learning model. The
model with an identical learning rate and forgetting rate (αL =

αF ) is called Q-learning with forgetting (F-Q-learning). We also
consider the model in which the learning rate and forgetting rate
are allowed to differ (αL ̸= αF ) and the learning rate can take a non-
zero value. This is called Q-learning with differential forgetting
(DF-Q-learning).

We suppose that there are at least two different types of
decision-outcomes. To estimate the subjective value of the out-
comes, we propose twomethods to represent the subjective value.
One method is non-parametric and assigns a single parameter for
each outcome type. The other method uses a parametric function,
which represents subjective values as a function of the objective
quantity of outcomes (e.g., amount, or delay).

In the non-parametric method, we set the value of outcome m
(m is the index of decision-outcome) as κm, and r(t) = κm if out-
come m appears at trial t (Katahira, Fujimura, Matsuda, Okanoya,
& Okada, 2014; Katahira, Fujimura, Okanoya, & Okada, 2011). For
example, the index of outcome indicates the reward amount (in
the following simulations and Task 1 of the rat experiments) and
the delay in reward (no-reward) signals (Task 2 of the rat exper-
iments). We denote the value of the reference outcome (such as
absence of reward) as κ0. This is often fixed at zero, but we also
examine the case in which κ0 is estimated as a free parameter. We
call r(t) and thus κms the reward value.We assume that the reward
value reflects the subjective value of the corresponding outcome.

When the outcome types are quantifiable, one canparameterize
the value function. In the parametric method, for example, the
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