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h i g h l i g h t s

• The size of an implication base of a Learning Space can be bounded by the square of the number of join-irreducible knowledge states.
• New compression methods based on wildcards are proposed both for Knowledge Spaces and for Learning Spaces.
• We compare, and enhance, the query-learning techniques used in Formal Concept Analysis and Learning Space Theory respectively.
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a b s t r a c t

Learning Spaces are certain set systems that are applied in the mathematical modeling of education. We
propose awildcard-based compression (without loss of information) of such set systems to facilitate their
logical and statistical analysis. Under certain circumstances compression is the prerequisite to calculate
the Learning Space in the first place. There are connections to the dual framework of Formal Concept
Analysis and in particular to so called attribute exploration.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In order to grasp the structure of this article one needs a basic
understanding of what Knowledge Spaces and the more specific
Learning Spaces are all about. Our introductory example in 1.1, that
aims to convey the gist of Learning Spaces to the novice, is based
on the introductory example of Doignon (2014). Only afterwards
we will be in a position to state our main contribution (in 1.2), and
to proceed with the Section break up (in 1.3).

1.1

A ‘knowledge structure’ (Q , K) consists of a domain Q and a
collectionK of subsets K ofQ . The elements ofQ , also called items,
are the elementary pieces of information. Each subset K , also called
knowledge state, contains all the items mastered by some hypo-
thetical student at some given time. In particular, complete igno-
rance and omniscience are represented respectively, by the empty
set and the domain itself. Besides these two extreme knowledge
states, K usually contains many more (knowledge) states. They
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correspond to potential (‘‘medium-talented’’) students. An exam-
ple (Q1, K1) with domain Q1 = {a, b, c, d} is shown in Fig. 1;
the circles display the 9 states, and the lines between them indi-
cate covering states. Let us explain why a knowledge structure like
(Q1, K1) is actually unlikely to occur in practice. The state {c, d}be-
longs toK1 but it is impossible for a learner to acquire themastery
of c and d one after the other. This is because neither {c} nor {d} is
knowledge state. This goes against the common view that learning
happens step-wise, one item a time. As another counter-intuitive
phenomenon, consider a student in state {b}. He many learn item
c to reach state {b, c}. Likewise, while in state {b}, he may decide
to first learn a, which brings him to state {a, b}. But then, strangely
enough, item c is no longer learnable since {a, b, c} is no knowl-
edge state.

The definition of a ‘Learning Space’ as a particular type of
knowledge structure avoids the two strange scenarios that we just
illustrated. It imposes the following two conditions on the states of
a knowledge structure (Q , K).

(A) ACCESSIBILITY. Any stateK contains an item q such thatK\{q}
is again a state.

(LC) LEARNINGCONSISTENCY. For a state K and items q, r if K∪{q}
and K ∪ {r} are states, then K ∪ {q, r} is also a state.
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Fig. 1. A ‘‘bad’’ knowledge structure K1 .

1.2

The primary purpose of this article is the application of
compression techniques (previously explored by the author in
other contexts) to accommodate knowledge structures with
millions of states. That not only reduces storage space but also
facilitates statistical analysis. In the framework of themore specific
Learning Spaces these compression techniques naturally lead to
‘‘query learning’’ which constitutes the second theme of our article.
Although the author’s expertise is skewed towards the first theme,
the research directions proposed for the second are deemed to be
fruitful.

1.3

Here comes the section break up. Section 2 introduces, by
way of a toy example, the basic idea of how large chunks of the
powerset P (Q ) can be chopped away in such a way that the
desired knowledge structure K results in a compressed fashion.

Section 3 presents both well and lesser known facts about
specific knowledge structures, i.e. so called Knowledge Spaces
(Q , K). In 3.1 we introduce the base B(K) ⊆ K . This leads (3.2)
to Dowling’s algorithm that generates K from B(K). In 3.3 we
make precise the informal ‘‘dual implications’’ (= dimplications)
occurring in Section 2. (The matching term in Falmagne and
Doignon (2011) is ‘‘entailment’’.) Of particular importance are
prime dimplications. In Theorem 1 we show how the set
PrimeDimp(K) of all prime dimplications of a Knowledge Space
K can be calculated fromB(K). In 3.4we see that PrimeDimp(K)
is just one example (though an important one) of a ‘‘dimplication
base’’ of K . Section 3.5 is about Learning Spaces K , as defined
by (A) and (LC) above. Learning Spaces are Knowledge Spaces K
for which both B(K) and PrimeDimp(K) are particularly well-
behaved. Section 3.6 elaborates on the well-known fact (Falmagne
& Doignon, 2011) that Learning Spaces are known as antimatroids
in the Combinatorics and Operations Research communities.

Section 4 is in the spirit of Section 2 butwithmore sophisticated
don’t-care symbols (aka wildcards). The underlying e-algorithm
was previously applied by the author in other circumstances. Here
we show that, given any base Θ of dimplications of an (unknown)
Knowledge Space K , the e-algorithm can calculate a compact
representation of K . In 4.2 the latter is used for statistical analysis
(as alluded to in 1.2), and in 4.3 we show how the base B(K) can
be sieved from it.

Section 5 recalls the duality between Knowledge Spaces K
and closure spaces C. In particular, dimplications correspond to

Fig. 2. A ‘‘good’’ knowledge structure K2 .

the better known implications. In 5.1 we introduce lattices and
show how each lattice L can be modeled naturally by a closure
system C(L). This allows to apply the theory of implications
to lattices. Many specific lattices have been investigated in this
regard, see Wild (2017) for a survey. For our purpose so called
meet-semidistributive lattices come into focus; the relevant facts
are readied in 5.2.

This is exploited in Section 6 where it leads to a second method
to compress a Learning Space, apart from the way in Section 4
which works for any Knowledge Space. In brief, whereas the
e-algorithm from Section 4 operates on the universe Q , the n-
algorithm from Section 6 has B as its universe, and always |B| ≥

|Q |. As opposed toΘ in Section 4, the size of the baseΣ of implica-
tions derived fromB can be bounded as |Σ | ≤ |B|

2 by Theorem 2.
Section 7 evaluates the discussed algorithms on computer-

generated random examples.
Section 8 dwells on the ‘‘query learning’’ aspect of it all. Thus

the framework of Formal Concept Analysis will be compared to
Knowledge Space Theory, and we glimpse at the general theory of
‘‘learning Boolean functions’’.

2. Compression of knowledge structures using don’t-care
symbols

A dual implication or briefly ‘‘dimplication’’ is a certain
statement about a knowledge structure which is either true or
false. To fix ideas, consider the knowledge structure K2 in Fig. 2
(which is based on Fig. 15.1 in Falmagne & Doignon, 2011) with
domain Q2 = {a, b, c, d, e}. By definition the dimplication {b, d}  
c ‘‘holds’’ inK2 when every studentwho fails both b and d also fails
c . Put another way: The mastering of c implies the mastering of b
or d. IfK2 is known in oneway or another, e.g. in diagram form as in
Fig. 2, then it is easy in principle (but possibly tiresome in practice)
to decide whether some dimplication holds. In our case {b, d}  c
holds in K2 because (check) every knowledge state K ∈ K2 that
contains c also contains b or d. Likewise {b, c}  e does not hold
in K2 because (say) K = {a, e} contains e but neither b nor c .

2.1

Before continuing with our toy example K2 it pays to properly
formalize dimplications. This concept was introduced in Koppen
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