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h i g h l i g h t s

• A simple quantum decision theory model that explains the Ellsberg paradox and is in conformity with the evidence.
• Reviews earlier attempts to explain the Ellsberg paradox, both classical and quantum.
• Provides a simple introduction to quantum decision theory.
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a b s t r a c t

We set up a simple quantum decision model of the Ellsberg paradox. We find that the matching
probabilities that ourmodel predict are in good agreement with those empiricallymeasured by Dimmock
et al. (2015). Our derivation is parameter free. It only depends on quantum probability theory in
conjunctionwith the heuristic of insufficient reason.We suggest thatmuch ofwhat is normally attributed
to probability weighting might actually be due to quantum probability.
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1. Introduction

Consider the following version of the Ellsberg experiment1 due
to Dimmock, Kouwenberg, and Wakker (2015). This involves two
urns: The known urn (K ) contains 100 balls of n different colors,
1 < n ≤ 100, the same number of balls for each color (for example,
if n = 5 then there are 5 different colors and 20 balls of each
color in K ). The unknown urn (U) also contains n balls of the same
colors as urn K but in unknown proportions. The subject is asked
to select one of the urns (K or U). A ball is drawn at random from
the urn chosen by the subject. There are two versions. In the low
probability version, the subject wins a sum of money if the color
of the ball drawn matches a preassigned color (which, however,
could be chosen by the subject). In the high probability version, the
subject wins the sum of money if the color of the randomly drawn
ballmatches any one ofn−1preassigned colors (again, these colors
could be chosen by the subject). These two versions are, of course,
equivalent if n = 2, but different for n > 2. The subject is also
allowed to declare indifference between K and U .

✩ We are grateful for valuable and critical comments from Jerome Busemeyer,
Andrew Colman, Ehtibar Dzhafarov, Emmanuel Haven, Andrei Khrennikov, Jesse
Matheson, Emi Mise, Briony Pulford, Sandro Sozzo, Peter Wakker, Mengxing Wei
and two anonymous reviewers.
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1 Ellsberg (1961, 2001) and Keynes (1921).

If a subject prefers K to U , she is called ambiguity averse. If she
prefers U to K , she is called ambiguity seeking. If she is indifferent
between K and U she is called ambiguity neutral.

Dimmock et al. (2015) perform a second set of experiments.
Here, the ratio of the colors (whatever they are) in U were kept
fixed. However, the ratio in K was varied until a subject declared
indifference. This ratio is then called the matching probability. For
example, in the low probability treatment, they found that for
n = 10 colors, subjects (on average) declared indifference between
K and U when the new urn K contained 22 balls (out of 100) of the
winning color. Hence, the matching probability of 0.1 ism (0.1) =

0.22 > 0.1. Thus, subjects exhibited ambiguity seeking for the low
probability of 0.1. In the high probability treatment, they found
that, again for n = 10 colors, subjects (on average) declared
indifferencewhen the new urn K contained 69 balls of thewinning
colors. Hence, the matching probability of 0.9 ism (0.9) = 0.69 <
0.9. For n = 2 colors, subjects (on average) declared indifference
when the newurnK contained 40 balls of thewinning color. Hence,
m (0.5) = 0.4 < 0.5. Thus, subjects exhibited ambiguity aversion
for medium and high probabilities but ambiguity seeking for low
probabilities.

The reason why preferring K to U (or U to K ) was regarded as
paradoxical2 is as follows. Although experimental subjects know

2 This was the situation before the advent of the source method, see Section 3.5.
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the proportion of colors in urn K (it contains exactly the same
number of each color), they do not know the ratio in urn U . But
they have no reason to believe that one color is more likely than
another. Hence, by the heuristic of insufficient reason (or equal a’
priori probabilities),3 they should assign the same probability to
each color in urnU .4 Hence, they should have no reason to prefer K
to U or U to K on probabilistic grounds. Keynes (1921) pointed out
that there is a difference in the strength or quality of the evidence.
Subjects may reason that, although the assignment of the same
probability to each color is sound, they are more confident in the
correctness of this judgement in the case of K than in the case of
U . Hence, they prefer K to U . Thus, their preference works through
the utility channel rather than the probability channel. However,
this explanation appears to be contradicted by the evidence of
Dimmock et al. (2015) that subjects are ambiguity seeking for
low probabilities. Moreover, even when subjects are told that
each color in U has the same probability, so that the heuristic of
insufficient reason is not needed, they still exhibit a preference
for K over U (Rode, Cosmides, Hell, & Tooby, 1999). Furthermore,
because the probabilities in urnU have been revealed, the observed
choice of K over U cannot be attributed to ambiguity aversion or
differences in the strength or quality of the evidence.

The importance of the Ellsberg experiments is twofold. First,
they provide tests for competing decision theories. Second, there
are many real-world situations that appear similar to the Ellsberg
paradox. One example is that of home-bias in investment (French
& Poterba, 1991; Obstfeld & Rogoff, 2000). Investors are often
observed to prefer investing in a domestic asset over a foreign asset
with the same return and the same riskiness.

La Mura (2009) proposed to replace standard (Kolmogorov)
probabilities in expected utility theory with quantum probabili-
ties; and called the resulting decision theory projective expected
utility theory. He gave an axiomatic foundation for this new theory
and derived the equivalence of the preference representation and
the utility representation. He applied the new theory to explain the
Allais paradox. He suggested it may explain the Ellsberg paradox.

Busemeyer and Bruza (2012, section 9.1.2) applied projective
expected utility theory to explain the Ellsberg paradox. Their
model has a free parameter, a. If a > 0 we get ambiguity aversion,
if a = 0,we get ambiguity neutrality, and if a < 0we get ambiguity
seeking. However, it cannot explain the simultaneous occurrence
in the same subject of ambiguity seeking (for low probabilities),
ambiguity neutrality and ambiguity aversion (for medium and
high probabilities), because a cannot be simultaneously nega-
tive, zero and positive. By contrast, our model (Section 5) pro-
vides a parameter-free derivation of quantumprobabilities and can
explain the simultaneous occurrence in the same subject of ambi-
guity seeking (low probabilities), ambiguity neutrality and ambi-
guity aversion (medium and high probabilities). Its predictions are
in good agreement with the empirical evidence in Dimmock et al.
(2015).

Busemeyer and Bruza (2012, section 9.1.2) conclude ‘‘In short,
quantum models of decision making can accommodate the Allais
and Ellsberg paradoxes. But so can non-additive weighted utility
models, and so these paradoxes do not point to any unique
advantage for the quantum model’’. Note, however, that there is
considerable arbitrariness in the choice of weights in weighted
utilitymodels. Hence, they introduce flexibility at the cost of lower
predictive power. In our model, we replace weights with quantum

3 Insufficient reason or equal a’ priori probabilities in now commonly referred to
as indifference. However, indifference has a well established alternative meaning in
economics. To avoid confusion, we shall use the older terminology.
4 The same reasoning can be repeated within any particular source in source

dependent theory (see Section 3.5). So we have to take K and U as different sources.

probabilities which are parameter-free. Thus, our application of
projective expected utility theory has a clear advantage over
all other decision theories. Furthermore, projective expected
utility can be extended to include reference dependence and
loss aversion, to yield projective prospect theory, where decision
weights are replaced with quantum probabilities. This would have
a clear advantage over all the standard (non-quantum) versions of
prospect theory.

Aerts, Sozzo, and Tapia (2014) formulate and study a quantum
decision theory (QDT)model of the Ellsberg paradox. They consider
one of the standard versions of the Ellsberg paradox. They consider
a single urn with 30 red balls and 60 balls that are either yellow or
black, the latter in unknown proportions. They use the heuristic
of insufficient reason for the known distribution (red) but not
for the unknown distribution (yellow or black). They prove that
in their mode, the Ellsberg paradox reemerges if they use the
heuristic of insufficient reason (or equal a’ priori probabilities) for
the unknown distribution. They, therefore, abandon this heuristic.
They choose the ratio of yellow to black to fit the evidence from
their subjects.

Although abandoning the heuristic of insufficient reason gives
models tremendous flexibility, it also reduces their predictive
power. In both classical (Kolmogorov) probability theory andquan-
tum probability theory, any probabilities (provided they are non-
negative and sum to 1) can be assigned to the elementary events.
To make a theory predictive, some heuristic rule is needed to
assign a’ priori probabilities (we call this a heuristic because it
does not follow from either classical or quantum probability the-
ory). The heuristic commonly used is that of insufficient reason or
equal a’ priori probabilities.5 This heuristic is crucial in deriving the
Maxwell–Boltzmann distribution in classical statistical mechanics
and the Bose–Einstein and Fermi–Dirac distributions in quantum
statistical mechanics.6 Furthermore, other theories can explain the
Ellsberg paradox if we abandon insufficient reason (see Section 2.3).
Thus, the explanation of Aerts et al. (2014) is not specifically quan-
tum, although it is expressed in that language.

Khrennikov and Haven (2009) provide a general quantum-
like framework for situations where Savage’s sure-thing principle
(Savage, 1954) is violated; one of these being the Ellsberg paradox.
Their quantum-like or contextual probabilistic (Växjö)model ismuch
more general than either the classical Kolmogorov model or the
standard quantum model (see Haven & Khrennikov, 2013, and
Khrennikov, 2010). On the other hand, our approach is located
strictly within standard quantum theory. Furthermore, in their
formulation, the Ellsberg paradox reemerges if one adopts (as we
do) the heuristic of insufficient reason.7

We set up a simple quantum decision model of the Ellsberg
paradox. We argue that our quantum decision model, in conjunc-
tionwith the heuristic of insufficient reason, is in broad conformity
with the evidence of Dimmock et al. (2015). In Table 1, the sec-
ond column gives the means across 666 subjects of the observed
matching probabilities for 0.1, 0.5 and 0.9. The third column gives
the sample standard deviations. The fourth column gives the the-
oretical predictions of our model.

Our theoretical predictions of m (0.5) and m (0.9) are in
excellent agreement with the average of observations. Our
theoretical prediction of m (0.1) is not statistically significantly
different from the average of observed values.8

5 To be sure, this heuristic is not without problems. See, for example, Gnedenko
(1968), Sections 5 and 6, pp 37–52.
6 See Tolman (1938), Section 23, pp 59–62, for a good early discussion.
7 Khrennikov and Haven (2009), section 4.6, p 386.
8 For m (0.1), z =

0.22−0.17105
0.25 = 0.1958 < 1.96. For such a large sample, the

t-distribution is practically normal. Based on the normal test, the evidence does not
reject the theoretical predictionm (0.1) = 0.17105 at the 5% level of significance.
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