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h i g h l i g h t s

• Representation of objects in an arbitrary n-dimensional vector space.
• Computation of quantum interference effects through vector similarity functions.
• Usage of contents of images to compute quantum interference parameters.
• Application of a Quantum-Like Bayesian Network to make predictions.
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a b s t r a c t

In this work, we propose to model the Categorization/Decision experiment from Busemeyer et al. (2009)
with a Quantum-Like Bayesian Network. We also propose the representation of objects (or events) in
an arbitrary n-dimensional vector space, enabling their comparison through similarity functions. The
computed similarity value is used to set the quantum parameters in the Quantum-Like Bayesian Network
model. Just like in the work of Pothos et al. (2013), we are not restricting our model to a vector in a two-
dimensional space, but to an arbitrary multidimensional space.

In the end, we conclude that the vector representation of the contents of the images can explain the
paradoxical findings and the violations of the laws of classical probability that were found in some works
of the literature, suggesting that the contents of the images can already produce some quantum effects.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this work is to explore the applications of the
formalisms of quantum mechanics to areas outside of physics,
more specifically in domains regarding decision making and
cognition.

Quantum cognition has emerged as a research field that aims
to build cognitive models using the mathematical principles of
quantum mechanics. In this sense, psychological (and cognitive)
models benefit from the usage of quantum probability princi-
ples because they have many advantages over classical counter-
parts (Busemeyer, Wang, & Shiffrin, 2015). In quantum theory,
events are represented as multidimensional vectors in a Hilbert
space. This vector representation comprises potentially for the
occurrence of all events at the same time. In quantum mechan-
ics, this property refers to the superposition principle. Under a
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psychological point of view, a quantum superposition can be re-
lated to the feeling of confusion, uncertainty or ambiguity (Buse-
meyer & Bruza, 2012). This vector representation neither obeys
the distributive axiom of Boolean logic nor the law of total prob-
ability. It also enables the construction of more general mod-
els that can mathematically explain cognitive phenomena such
as violations of the Sure Thing Principle (Khrennikov & Haven,
2009;Martínez-Martínez& Sánchez-Burillo, 2016),which is the fo-
cus of this study. Quantum probability principles have also been
successfully applied in many different fields of the literature,
namely in biology (Asano et al., 2012; Asano, Khrennikov, & Ohya,
2015), economics (Haven & Khrennikov, 2013; Khrennikov, 2009),
perception (Conte, 2008; Conte et al., 2007), jury duty (Trueblood
& Busemeyer, 2011), game theory (Brandenburger, 2010; Mura,
2005), order effects (Wang, Solloway, Shiffrin, & Busemeyer, 2014),
opinion polls (Khrennikov & Basieva, 2014; Khrennikov, Basieva,
Dzhafarov, & Busemeyer, 2014), etc.

Previously in the literature, Busemeyer, Wang, and Lambert-
Mogiliansky (2009) studied the differences between a classical
Markov and a quantum dynamical model in order to explain
some violations of the law of classical probability theory in a
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categorization experiment. Participants were presented with a set
of digitally modified images of faces. Then, they had to first to
categorize the face as Good or Bad and then perform the decision
to either Withdraw or Attack. In the end, the proposed quantum
dynamical model was able to accommodate the violations of
the laws of classical probability theory by fitting the quantum
parameters. This work demonstrated that quantum theory could
be applied to build more general models to explain paradoxical
situations found in cognitive psychology. More recently, more
experiments to investigate the impact of quantum interference
effects under the categorization experiment have been performed
in the work of Wang and Busemeyer (2016).

In the present work, we propose an alternative way to accom-
modate the paradoxical findings detected in the experiments of
Busemeyer et al. (2009) and Townsend, Silva, Spencer-Smith, and
Wenger (2000) that takes only into account the contents of the im-
ages and their vector similarities. The current work makes use of a
Quantum-Like Bayesian model, initially introduced in the work of
Moreira and Wichert (2014), and later developed in the works of
Moreira and Wichert (2015a,b, 2016). The similarity is used to fit
quantum interference parameters in the Quantum-Like Bayesian
Network model. The main advantage of the proposed Quantum-
Like Bayesian Network towards other cognitive models is its pre-
dictive nature and its scalability. By scalability we mean that the
network structure of the proposed model is able to model more
complex decision scenarios (scenarios that are modelled with sev-
eral random variables). Moreover, through the representation of
objects (or events) by their contents, one is able to perform vector
similarities in an n-dimensional vector space and compute quan-
tum parameters.

Approaching this categorization/decision experiment under a
quantum probabilistic point of view is also important for several
reasons (Pothos & Busemeyer, 2013). For instance, in the work
of Pothos and Busemeyer (2009), the authors showed that a
classical Markov model could not explain the violations to the
Sure Thing Principle found in the experiment. Of course, one
could always model a Markov model with extra hidden states
and parameterizations to model these violations. However, this
would lead to an exponential increase in complexity. Quantum
probability theory is important for this reason. The geometric
representation of events, which is present in quantum probability,
does not exist in a classical setting. The main advantage of this
geometrical representation is the ability of allowing the rotation
from one basis into another in order to contextualize events and
interpret events, providing great flexibility to decision-making
systems.

2. Overview of probabilistic graphical models

In this section, we introduce the concepts of classical and
Quantum-Like Bayesian Networks.

2.1. Classical Bayesian Networks

A classical Bayesian Network can be defined by a directed
acyclic graph structure in which each node represents a different
randomvariable froma specific domain and each edge represents a
direct influence from the source node to the target node. The graph
can represent independence relationships between variables, and
each node is associated with a conditional probability table
that specifies a distribution over the values of a node given
each possible joint assignment of values of its parents (Koller &
Friedman, 2009).

The full joint distribution (Russel & Norvig, 2010) of a Bayesian
Network, where X is the list of variables, is given by:

Pr(X1, . . . , Xn) =

n
i=1

Pr(Xi|Parents(Xi)). (1)

The formula for computing classical exact inferences on
Bayesian Networks is based on the full joint distribution (Eq. (1)).
Let e be the list of observed variables and let Y be the remaining un-
observed variables in the network. For some query X , the inference
is given by:

Pr(X |e) = αPr(X, e) = α


y∈Y

Pr(X, e, y)


(2)

where α =
1

x∈X
Pr(X = x, e)

.

The summation is over all possible y, i.e., all possible combina-
tions of values of the unobserved variables y. The α parameter cor-
responds to the normalization factor for the distribution Pr(X |e)
(Russel & Norvig, 2010). This normalization factor comes from
some assumptions that are made in Bayes rule.

2.2. Quantum-Like Bayesian Networks

A more recent work from Moreira and Wichert (2014)
suggested defining the Quantum-Like Bayesian Network in the
same manner as in the work of Tucci (1995), replacing real
probability numbers by quantum probability amplitudes.

In this sense, the quantum counterpart of the full joint
probability distribution corresponds to the application of Born’s
rule to Eq. (1). An interesting discussion about the foundations of
Born’s rule can be found in the article of Deutsch (1988).

Pr(X1, . . . , Xn) =

 N
i=1

ψ(Xi|Parents(Xi))


2

. (3)

The general idea of a Quantum-Like Bayesian network is
that, when performing probabilistic inference, the probability
amplitude of each assignment of the network is propagated and
influences the probabilities of the remaining nodes. In otherwords,
every assignment of every node of the network is propagated until
the node representing the query variable is reached. Note that,
by taking multiple assignments and paths at the same time, these
trails influence each other and produce interference effects.

The quantum counterpart of the Bayesian exact inference
formula corresponds to the application of Born’s rule to Eq. (2),
leading to:

Pr(X |e) = α

y

N
x=1

ψ(Xx|Parents(Xx),e,y)


2

. (4)

Expanding Eq. (4), it will lead to the quantum interference
formula:

Pr(X |e) = α

 |Y |
i=1

 N
x

ψ(Xx|Parents(Xx),e,y=i)


2

+ 2 · Interference


Interference =

|Y |−1
i=1

|Y |
j=i+1

 N
x

ψ(Xx|Parents(Xx),e,y=i)


·

 N
x

ψ(Xx|Parents(Xx),e,y=j)

 · cos(θi − θj). (5)

In the end, we need to normalize the final scores that are com-
puted to achieve a probability value, because we do not have the
constraints of double stochasticity operators. In classical Bayesian
inference, normalization of the inference scores is also necessary
due to assumptions made in Bayes rule. The normalization factor
corresponds to α in Eq. (5).
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