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h i g h l i g h t s

• We take a new look at data collected in a sequential prisoner’s dilemma.
• We observe three behavioral effects and argue that two have a quantum-like nature.
• Preferences and beliefs of the players exhibit complementarity.
• We build a model in line with the theory of positive-operator valued measure.
• The model is successfully applied to explain the experimental results.
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a b s t r a c t

We propose a formal model to explain the mutual influence between observed behavior and subjects’
elicited beliefs in an experimental sequential prisoner’s dilemma. Three channels of interaction can be
identified in the data set and we argue that two of these effects have a non-classical nature as shown, for
example, by a violation of the sure thing principle. Our model explains the three effects by assuming
preferences and beliefs in the game to be complementary. We employ non-orthogonal subspaces of
beliefs in line with the literature on positive-operator valued measure. Statistical fit of the model reveals
successful predictions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

During the recent decade, there is an increasing interest in
decision-making and cognitive models that employ a quantum
probabilistic (QP) framework. In fact, the application of quantum-
like concepts to portray human information processing was
considered since the early development of quantum mechanics.
For example, Bohr (1950) defended the idea that some aspects
of quantum theory could provide an understanding of cognitive
processes but never provided a formal cognitive model in light of a
QP hypothesis. The so called quantum cognitive theories have only
begun to emerge as of late (Busemeyer & Bruza, 2012; Deutsch,
1999; Haven & Khrennikov, 2013; Khrennikov, 2010; Pothos &
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Busemeyer, 2013; Wang, Solloway, Shiffrin, & Busemeyer, 2014;
Yearsley & Pothos, 2014).

QP is defined as the set of mathematical rules used to assign
probabilities to events from quantum mechanics (Hughes, 1989;
Isham, 1989), but without any of the physics. As it is derived
from different sets of axioms than classical probability theory,
it is subject to alternative constraints and has the potential to
be relevant in any area of science where a need to formalize
uncertainty arises. Since encoding uncertainty is a major aspect of
cognitive functions in psychology, QP shows potential for cognitive
modeling. These studies are not about the use of quantum physics
in brain physiology, which is a disputable issue (Hameroff, 2007;
Litt, Eliasmith, Kroon, Weinstein, & Thagard, 2006) about which
we are skeptical. Rather, we are interested in QP theory as a
mathematical framework for cognitive modeling.

Applications of QP theory have been presented in
decision-making (Bordley, 1998; Busemeyer, Pothos, Franco, &
Trueblood, 2011; Busemeyer, Wang, & Townsend, 2006; Lambert-
Mogiliansky, Zamir, & Zwirn, 2009; Pothos & Busemeyer, 2009;
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Trueblood & Busemeyer, 2011;White, Pothos, & Busemeyer, 2014;
Yukalov & Sornette, 2011), conceptual combination (Aerts, 2009;
Aerts & Gabora, 2005; Blutner et al., 2008), memory (Bruza,
2010; Bruza, Kitto, Nelson, & McEvoy, 2009), and perception
(Atmanspacher, Filk, & Römer, 2004). For a detailed study on the
potential use of quantum modeling in cognition, see Busemeyer
and Bruza (2012) and Pothos and Busemeyer (2013). The major-
ity of models presented in the quantum cognition literature ad-
dresses standard aspects of decision-making processes: similarity
judgments (Barque-Duran et al., 2016; Pothos et al., 2015; Years-
ley, Pothos, Hampton, &Barque-Duran, 2014), the constructive role
of articulating impressions (White, Barque-Duran, & Pothos, 2015;
White et al., 2014), and order effects in belief updating (Trueblood
& Busemeyer, 2011) among numerous other applications.

Little literature has focused on strategic decision-making or
game theory. Whenever two or more agents interact, one agent
is not only reacting to the information that he receives, but
is likewise generating information towards other players. These
strategic environments are unique in relation to standard decision-
making scenarios under uncertainty, since every agent needs to
reason on two parts of the problem: his own actions and his
expectations on the opponent’s actions. Few studies applying QP
instruments to model the way agents process the information in a
game have been published with regards to this particular matter:
Busemeyer and Pothos (2012), Martínez-Martínez and Sánchez-
Burillo (2016), Pothos and Busemeyer (2009), and Pothos, Perry,
Corr, Matthew, and Busemeyer (2011). Other approaches in which
the quantumness enters through an extension of the classical
space of strategies and/or signals have also been discussed,
e.g., by Brandenburger (2005), Brunner and Linden (2013), and
La Mura (2005); as well as a model to analyze games with
agents exhibiting contextual preferences (Lambert-Mogiliansky &
Martínez-Martínez, 2015).

In this paper, we describe the application of QP theory to
modeling the mutual influence between preferences and beliefs
in sequential social dilemmas. This idea was first explored in
Martínez-Martínez, Denolf, and Barque-Duran (2015). We present
a quantum-like model for preferences and beliefs (QP&B) that
replicates the experimental results from Blanco, Engelmann, Koch,
and Normann (2014) while providing a novel theoretical approach
on cognitive dynamics in strategic interactions. Our model asserts
that the relationship between a player’s beliefs and his preferences
is inherently non-classical and continues the work done in Pothos
and Busemeyer (2009) exploiting the ideas of measurement
utilized in quantum theory. We redefine these two properties as
complementary. In that capacity, they cannot be measured at the
same time, as the act of measuring one property alters the state of
the other property. The non-classical nature of such a relationship
and its application in cognition has already been discussed in, e.g.,
Denolf and Lambert-Mogiliansky (2016).

2. Experimental design

The data set that our QP&B model deals with is provided by
Blanco et al. (2014). Their experiment was designed for explicitly
testing different channels through which preferences and beliefs
of an agent immersed in a social dilemma may influence each
other. As the authorsmotivate, this experimental evidence is novel
and its main interest stems from the fact that previous analyses
of strategic interactions considered preferences and beliefs to
be independent. This fact implies that the choice of actions in
environments with uncertainty can be rationalized as just a best-
response to some particular form of belief about the possible states
of the world or about the action that is expected to be played by an
opponent.

2.1. Standard version of the prisoner’s dilemma game

The symmetric prisoner’s dilemma game is a game involving
two players, player I and player II, who can choose among two
actions: cooperate (C) or defect (D). The normal form of this game
is defined by the following 2 × 2 payoff matrix

(1)

where the payoff entries satisfy the inequalities πa > πc > πd >
πb.

The scheme of possible results of payoffs is as follows. If player
I decides to cooperate, I can receive the second best possible
outcome πc if the opponent II also cooperates, but I ’s attempt to
cooperate is exposed to being exploited by II if II decides to defect.
In the latter scenario, II would collect the best outcome of value
πa while leaving I with the lowest payoff πb. If player I decides
to defect, then this player is guaranteed not to obtain the lowest
payoff, but at least an amountπd if player II defects aswell. If player
II decided to cooperate, then I is taking advantage of the situation
and obtaining the maximum benefit πa.

Technically, we say that mutual defection is the Nash equilib-
rium of this game because there is no unilateral deviation that
couldmake the deviating player earnmore, whilemutual coopera-
tion is the Pareto optimal situation. Therefore, this game represents
a social dilemma for the players: the individual choice of defection
dominates the attempt to cooperate for any given choice of the op-
ponent, which is not socially optimal. Why is this a dilemma? Be-
cause this game formalizes a conflict between the individual (the
Nash equilibrium) and the collective (Pareto optimal) level of rea-
soning: if both players actually choose to defect, both of them gen-
erate a total payoff of 2×πd, which is by definition lower than the
aggregate payoff if both of them coordinated in full cooperation,
2 × πc .

The standard version of the prisoner’s dilemma game is
a one-shot strategic interaction with simultaneous moves by
the opponents. This implies that both players make their own
individual decision (whether to cooperate or not)without knowing
what the opponent is choosing. Once both players have chosen
their strategy, both actions become public and the payoffs are
generated.

Each player reacts to his own belief or expectation on the
opponent’s intention, and as a consequence, the preferred action
in the dilemma crucially depends on the way players form their
beliefs about the opponent moves. Therefore, it is important to
understand how beliefs and preferences do (or do not) influence
each other in this decision-making process.1

2.2. Sequential prisoner’s dilemma

The experiment conducted by Blanco et al. (2014) focuses on
a variation of the Prisoner’s Dilemma game discussed above: a
sequential one. In Fig. 1, we show the game tree of the game
played in this sequential experiment (b), and compare it to its
standard (simultaneous) counterpart with equivalent payoffs (a).
In the sequential version, the solution concept required is the

1 See Blanco et al. (2014, Section 1) about possible correlations between
preferences and beliefs in dilemmas with models of social preferences such as
inequality aversion and reciprocal preferences.
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