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h i g h l i g h t s

• The aggregation of rankings, which is a common decision making problem in many fields of application, is addressed from a statistical point of view.
• The property of monotonicity of the profile, which serves as a tool for differentiating between truth an optimality in the aggregation of rankings, has

been introduced.
• A noise model representing how people make mistakes, which results in both a measure of the most likely ranking and a statistical test for validating

the real existence of such ranking, is proposed.
• The procedure has been illustrated with a real-life example concerning a decision making problem.
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a b s t r a c t

The choice of the ranking that best captures the preferences of several voters on a set of candidates
has been a matter of study for centuries. An interesting point of view on this problem is centred on the
notion ofmonotonicity. In this paper, we deal with an aspect of monotonicity that has not been addressed
before: if there is a true ranking on the set of candidates and every voter expresses a ranking on the set of
candidates, then the number of times that each ranking is expressed should decreasewhenwemove away
from this true ranking in terms of pairwise discordances. In addition, we propose a probabilistic model
that allows to formulate the choice of the best ranking as a maximum likelihood estimation problem. A
test for the validity of this monotonicity assumption is also proposed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In 1785, Marie Jean Antoine Nicolas Caritat, mostly known as
Condorcet (1785), followed the direction started by Rousseau in
his remarkable work ‘Du Contrat Social’ (Rousseau, 1762) where
he discusses about the ‘general will’: ‘‘When a law is proposed
in the people’s assembly, what is asked of them is not precisely
whether they approve of the proposition or reject it, but whether it
is in conformity with the general will [. . . ]’’. In that way, Condorcet
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stated that it is not a compromise ranking what is searched,
but an unknown truth that remains hidden due to the fact that
‘‘voters sometimes make mistakes in their judgements’’. In order
to identify this unknown truth, Condorcet proposed a probabilistic
model ‘‘of how the observed quantities depend probabilistically on
the unobservable state of nature’’ for finding the ranking that is
the ‘‘most likely to be best’’ (Young, 1988). In this same direction,
Arrow (1963) stated a couple of centuries later the following: ‘‘[. . . ]
each individual has two orderings, one which governs him in his
everyday actions, and one which would be relevant under some
ideal conditions and which is in some sense truer than the first
ordering. It is the latter which is considered relevant to social
choice, and it is assumed that there is complete unanimity with
regard to the truer individual ordering’’.

According to this philosophy where one supposes that there
is a ‘true’ ranking on the set of candidates and voters attempt to
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identify this unknown truth, we propose in this paper to require
the probabilities associated with the rankings to decrease in case
we move away from the ‘true’ ranking. Intuitively, we advocate
that, for a ranking a ≻ b ≻ c , the probability of a voter expressing
the ranking a ≻ b ≻ c should be greater than the probability of
a voter expressing the ranking a ≻ c ≻ b; the latter probability
should be at the same time greater than the probability of a voter
expressing the ranking c ≻ a ≻ b; etc. We can interpret this
natural requirement as some sort of monotonicity. Monotonicity
is a common desired property in mathematical modelling, and its
importance has been acknowledged in several disciplines, e.g. in
machine learning (Ben-David, 1995; Cao-Van & De Baets, 2003;
Lievens, De Baets, & Cao-Van, 2008) and fuzzymodelling (Perfilieva
& De Baets, 2010; Stepnicka & De Baets, 2013; Van Broekhoven
& De Baets, 2009). However, real-life data is often imperfect and
does not fully comply with the monotonicity hypothesis. One
option then is to (minimally) adjust the dataset restoring the
monotonicity (Rademaker & De Baets, 2011; Rademaker, De Baets,
& De Meyer, 2009, 2012). This is particularly important as, for
instance, in machine learning, some algorithms cannot be trained
with non-monotone datasets (Rademaker et al., 2009).

Returning to the field of social choice theory, several ranking
rules centred on this monotonicity property (interpreting the
monotonicity requirement in many different ways) have already
been proposed. Rademaker and De Baets (2014) advocated that,
for a ranking a ≻ b ≻ c , monotonicity implies that the number
of voters preferring a to c should not be less than both the number
of voters preferring a to b and the number of voters preferring b to
c. Pérez-Fernández et al. (2016) formalized the former approach as
the search for monotonicity of a natural representation of votes:
the votrix.1 Monotonicity of other representations of votes, such
as the scorix (Pérez-Fernández, Rademaker, & De Baets, 2016) and
the votex (Pérez-Fernández et al., 2016), has also been analysed
in recent works, leading to the introduction of many different
intuitive ranking rules. However, none of these ranking rules
based on the search for monotonicity of a representation of votes
has been shown to be a maximum likelihood estimator (for an
appropriate probabilistic model) of the latent ‘true’ ranking on
the set of candidates (Conitzer & Sandholm, 2005). In this paper,
a ranking rule based on the natural property of monotonicity
of the profile of rankings is proposed. Moreover, we introduce
a probabilistic model introducing how people make mistakes
that results in the identification of the most likely ranking, and,
additionally, in a statistical test for validating the real existence of
such ranking.

The rest of the paper is organized as follows. Section 2 is
devoted to the search for an optimal ranking. In Section 3, the
notion of Maximum LikelihoodMonotone Estimator is introduced.
This estimator is used subsequently to test the monotonicity
assumption in Section 4. The methodology is illustrated on a real-
life example in Section 5. Finally, we address some conclusions and
open problems in Section 6.

2. Monotonicity of a profile of rankings

Social choice theory considers the problem where several
voters express their preferences on a set C of k candidates. In
the setting considered here, each of the r voters expresses his/her
preferences on the set of candidates in the formof a ranking≻j (the
asymmetric part of a total order relation ≽j). The list R = (≻j)

r
j=1

1 The fact that there exists a ranking w.r.t. which the votrix is monotone implies
the property of strong stochastic transitivity (Rieskamp, Busemeyer, & Mellers,
2006). A weaker property, usually referred to as weak stochastic transitivity, has
also called the attention of researchers (Regenwetter, Dana, & Davis-Stober, 2011).

consisting of all the provided rankings is known as the profile of
rankings given by the voters. A rule deciding which ranking is the
winning ranking for a given profile of rankings is called a ranking
rule.

In the following, we will provide some notations that will be
used throughout this paper. The set of all possible rankings on
C is denoted by L(C ) and the set of all possible profiles of r
rankings on C is denoted by L(C )r . Every ranking ≻∈ L(C ) is
identified with a label i ∈ {1, . . . , k!} (for instance, determined by
the lexicographical order on L(C )). It is important to note that the
labelling i ∈ {1, . . . , k!} of the rankings in L(C ) does not coincide
with the labelling j ∈ {1, . . . , r} of the rankings in the profile R.

Any profile of rankings is determined by the number of times
that each ranking is expressed.2 Wedenote bynR ∈ {0, 1, . . . , r}k!
the vector of absolute frequencies ofR, wherenR(i) is the absolute
frequency of the ith ranking inL(C ), i.e., the number of voters that
expressed the ith ranking inL(C ) in the profileR. Analogously, we
denote by fR ∈ {0, 1

r , . . . , 1}
k! the vector of relative frequencies of

R, where fR(i) is the relative frequency of the ith ranking in L(C )
in the profile R. For any i ∈ {1, . . . , k!}, it obviously holds that

r · fR(i) = nR(i).

In addition, it holds that
k!
i=1

nR(i) = r and
k!
i=1

fR(i) = 1.

The set of all possible vectors f ∈ {0, 1
r , . . . , 1}

k! that can be seen
as the vector of relative frequencies of a profile R of r rankings
on C is denoted by Rr(C ). Analogously, the set of all possible unit
vectors, i.e., all possible vectors f ∈ [0, 1]k! such that

k!
i=1 f(i) = 1,

is denoted by R(C ). Obviously, it holds that

Rr(C ) ⊆ R(C ).

Each ranking ≻ on C defines an order relation on L(C )
according to how far two rankings in L(C ) are from ≻ in terms
of reversals.3 For any ≻i, ≻j ∈ L(C ), the fact that (≻i, ≻j) ∈ is
denoted by ≻i ≻j.

Proposition 1. Let C be a set of k candidates and ≻ be a ranking on
C . The relation defined as

=

(≻i, ≻j) ∈ L(C )2 |


∀(ai1 , ai2) ∈ C 2

(ai1 ≻ ai2) ∧ (ai1 ≻j ai2)


⇒ (ai1 ≻i ai2)


is an order relation on L(C ).

Proof. We prove that satisfies reflexivity, antisymmetry and
transitivity.

Reflexivity: holds trivially.
Antisymmetry: for any ≻i, ≻j ∈ L(C ), if ≻i ≻j and ≻j ≻i,

then it holds that:
∀(ai1 , ai2) ∈ C 2 (ai1 ≻ ai2) ∧ (ai1 ≻j ai2)


⇒ (ai1 ≻i ai2)


,

∀(ai1 , ai2) ∈ C 2 (ai1 ≻ ai2) ∧ (ai1 ≻i ai2)


⇒ (ai1 ≻j ai2)

.

Therefore, for any ai1 , ai2 ∈ C such that ai1 ≻ ai2 , it holds that

(ai1 ≻i ai2) ⇔ (ai1 ≻j ai2).

2 We consider here (anonymized) profiles of rankings (Pérez-Fernández,
Rademaker, & De Baets, 2017), i.e., we do not take the order of the voters into
account.
3 A reversal is a switch of consecutive elements in a ranking. The minimum

number of reversals needed for changing a given ranking into another one is
measured by the Kendall distance function (Kendall, 1938).
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