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• Experimental validation of non-Bayesian updating in decision making.
• Quantum probability model of concrete decision making problem.
• Investigation of zero-priors trap in decision making.
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a b s t r a c t

Cromwell’s rule (also known as the zero priors paradox) refers to the constraint of classical probability
theory that if one assigns a prior probability of 0 or 1 to a hypothesis, then the posterior has to be 0 or 1
as well (this is a straightforward implication of how Bayes’ rule works). Relatedly, hypotheses with a very
low prior cannot be updated to have a very high posterior without a tremendous amount of new evidence
to support them (or to make other possibilities highly improbable). Cromwell’s rule appears at odds with
our intuition of how humans update probabilities. In this work, we report two simple decision making
experiments, which seem to be inconsistent with Cromwell’s rule. Quantum probability theory, the rules
for how to assign probabilities from the mathematical formalism of quantum mechanics, provides an
alternative framework for probabilistic inference. An advantage of quantum probability theory is that
it is not subject to Cromwell’s rule and it can accommodate changes from zero or very small priors
to significant posteriors. We outline a model of decision making, based on quantum theory, which can
accommodate the changes from priors to posteriors, observed in our experiments.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Probability theory is at the heart of our effort to understand the
working of the human mind: As cognitive agents, we have to sur-
vive and flourish in an inherently uncertain world. Therefore, it is a
reasonable hypothesis that the principles that guide cognition are
those of a formal probability theory. The most widely employed
and successful probability theory in cognitive science is classical
probability (CP) or Bayesian theory. CP cognitivemodels have been
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the basis for successful cognitive explanation for many aspects of
behavior, including decision making, learning, categorization, per-
ception, and language. Moreover, CP has provided a foundation for
issues key to human existence, such as the question of rational-
ity (for overviews see Griffiths, Chater, Kemp, Perfors, & Tenen-
baum, 2010;Oaksford&Chater, 2007; Tenenbaum,Kemp,Griffiths,
& Goodman, 2011). Yet there are some behavioral situations that
prove problematic from a CP perspective and challenge the univer-
sal applicability of CP theory in cognition. The focus of this paper is
one such situation, related to probabilistic updating.

Probabilistic updating concerns the rules for how we should
revise our estimate for the probability of a hypothesis, given
some new information. According to CP, our belief in different
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hypotheses should be updated using Bayes’ law, which states that

p (Hi|D) =
p (D|Hi) p (Hi)
j
p

D|Hj


p

Hj

 . (1)

Here Hi is a particular hypothesis and D is the observed data. In
the set-theoretical paradigm, Eq. (1) is equivalent to

p(Hi|D) =
p(Hi ∩ D)
j
p(Hj ∩ D)

. (1′)

The term p(Hi ∩ D) is the joint probability of a hypothesis and the
data. Bayes’ rule is highly intuitive, indeed to the point that it is
hard to envisage alternatives. Our research program has largely
been concerned with exploring a particular alternative probabilis-
tic framework, which reveals alternative intuitions about proba-
bilistic inference.

One important characteristic of Bayes’ law is its stringent
linearity; updated probabilities are linearly dependent on the
priors. Thus, Bayes’ rule must satisfy a very important property:
when the prior is zero, then regardless of the data that we observe,
the posterior probability, p(Hi|D) as calculated by Bayes’ law, has
to be zero aswell. Likewise, when the prior is one, the posterior has
to be one as well. In fact, the earliest documented instance of this
problem goes back to the 17th century. Oliver Cromwell allegedly
said to the members of the synod of the Church of Scotland ‘‘to
think it possible that you may be mistaken’’ (Carlyle, 1855). The
argument goes that (if one cares to stay open-minded) one should
assign some small possibility to even the most improbable state
of affairs. Otherwise, however much evidence is subsequently
accumulated in favor of the zero-prior possibility, if one employs
Bayes’ law for probability updating, one will be trapped with
all-zero posteriors. This observation has been called Cromwell’s
rule, but we can also call it a zero priors trap. But the problem
is more general than just concerning prior hypotheses, which are
entirely possible or impossible, since the ratio of the likelihoods is
constrained by the ratio of the priors. This means that for initially
very unlikely hypotheses, whatever the evidence we observe, it
will be impossible to attain high posteriors. Behaviorally this
seems unlikely and it is the purpose of the present paper to
explore this intuition formally and empirically. Note, the validity
of Bayesian updating has been questioned before, for example,
by Van Wallendael and Hastie (Robinson & Hastie, 1985; Van
Wallendael, 1989; VanWallendael & Hastie, 1990) who noted that,
upon receiving information about one hypothesis, people tend to
revise only the corresponding probability and leave their other
estimates untouched (so that the total fails to equal one).

A natural domain for testing Cromwell’s rule is detective
stories, where the criminal turns out to be someone completely
unexpected (as in Dostoevsky’s The Brothers Karamazov, where, in
full compliance with CP rules, prior beliefs about the innocence of
the actual criminal were so strong, that his complete confession
together with other hard evidence failed to convince the court)
or not even a person (as in Poe’s The Murder in the Rue Morgue).
We present a simple experimental paradigm, based on a crime
mystery, where all suspects are listed beforehand. The information
about the crime mystery that participants initially see makes
some suspects impossible/extremely unlikely. We then provide
additional information, which makes some of these initially
impossible options likely. Do participants update their beliefs in a
way that is inconsistent with Bayes’ law? That is, do participants
produce evaluations of posterior probabilities that exceed the
prior probabilities by amounts that go beyond what is allowed by
Bayes’ law? We will demonstrate that the probabilities given by
participants in the course of this crime-solving paradigm strongly
violate Bayesian updating. In fact, in 20% of cases, participants

updated a prior of close to zero to a very high posterior, in a single
step.

Seeking to obtain evidence against Bayes’ law in decision
making raises the question of whether there may be an alternative
formal framework for understanding probability updating, for
these situations where Bayes’ law may be problematic. Are there
principles for probabilistic updating that allow the impossible to
become possible? The standard way to deal with such situations
in CP theory is additive smoothing, but this is typically applied
a posteriori. For example, after we identify a new possibility, we
can reshuffle the prior probabilities adding a ‘‘pseudo-count’’ to
all the priors, so that no option on the (a posteriori!) list has a
zero prior. There are other approaches (Hoppe, 1984), such as the
Pólya urn model, directly enforcing an increase in the probability
of a less probable event, each time the more probable event
happens. For example, starting with an urn containing only (or
mostly) black balls, we add a white ball each time a black ball is
drawn. But what about options (e.g., balls of some new color) that
are considered completely impossible at the outset? Yet a third
possibility involves Shafer’s representation of belief states (Shafer,
1976) where possible options are grouped (so that one has beliefs
about the groups rather than individual hypotheses). In Section 4
we briefly consider whether this approach can address the zero
priors paradox.

One probabilistic framework that is not constrained by
Cromwell’s rule is quantum probability theory (QPT). In QPT, the
rule for updating probabilities, called the von Neumann–Lüders’
rule, allows arbitrarily large increases in posterior probabilities,
even if the priors are zero, when there are discontinuous changes
in belief states (resulting from measurements).

We call QPT the rules for how to assign probabilities to events
from quantum mechanics, without any of the physics. QPT is in
principle applicable in any situation where there is a need to for-
malize uncertainty. The motivation to employ QPT in psychology
exactly concerns situations, where the prescription from CP is at
odds with human behavior or intuition. For example, in decision
making, such situations correspond to findings that human be-
havior violates CP principles, such as the law of total probability
or the commutativity of conjunctions (Conte et al., 2007; Croson,
1999; Hofstader, 1983; Shafir & Tversky, 1992; Trueblood & Buse-
meyer, 2011; Tversky & Kahneman, 1983; Tversky & Shafir, 1992).
Corresponding QPT cognitive models have achieved a measure of
descriptive success, usually through assumptions that particular
variables or questions are incompatible (overviews in Busemeyer&
Bruza, 2012;Haven&Khrennikov, 2012; Khrennikov, 2003; Khren-
nikov, 2010; Pothos & Busemeyer, 2013). Note, a uniform assump-
tion in such models is that they are all effectively hidden variables
models, that it, that there is no ‘true’ quantum structure in cogni-
tion (Yearsley & Pothos, 2014; cf. Dubois & Lambert-Mogiliansky,
2015).

QPT provides an entirely different (compared to the standard
CP one) framework for probabilistic inference, where events and
probabilities are represented by vectors in a Hilbert space and
Hermitian operators. We shall outline the instruments from QPT
relevant to Cromwell’s rule in the next section. In closing the
introduction, it is worth noting that in exploring alternative
probabilistic frameworks, QPT is not the only choice, and there are
options that are even more non-classical, compared to QPT. For
example, there are probability models that account for ‘‘negative
probabilities’’ regularly encountered both in physics and cognitive
psychology (Acacio de Barros, 2014; Acacio de Barros & Oas, 2014;
see also Narens, 2015).
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