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h i g h l i g h t s

• A review of individual trial analyses in the peak procedure is presented.
• The Time-adaptive Drift–diffusion Model is shown to be able to explain the data.
• TDDM is shown to be equivalent to Scalar Expectancy Theory under the peak procedure.
• DDMs might provide a comprehensive theory of decision making, choice and timing.
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a b s t r a c t

Drift–diffusionmodels (DDMs) are a popular framework for explaining response times in decision-making
tasks. Recently, the DDM architecture has been used to model interval timing. The Time-adaptive DDM
(TDDM) is a physiologically plausiblemechanism that adapts in real-time to different time intervals while
preserving timescale invariance. One key open question is how the TDDM could deal with situations
where reward is omitted, as in the peak procedure—a benchmark in the timing literature. When reward
is omitted, there is a consistent pattern of correlations between the times at which animals start and
stop responding. Here we develop a formulation of the TDDM’s stationary properties that allows for the
derivation of such correlations analytically. Using this simplified formulation we show that a TDDMwith
two thresholds – one to mark the start of responding and another the stop – can reproduce the same
pattern of correlations observed in the data, as long as the start threshold is allowed to be noisy. We
confirm this by running simulations with the standard TDDM formulation and show that the simplified
formulation approximateswell the fullmodel under steady-state conditions.Moreover, we show that this
simplified version of the TDDM is formally equivalent to Scalar Expectancy Theory (SET) under stationary
behaviours, the most prominent theory of interval timing. This equivalence establishes the TDDM as a
more complete drift–diffusion based theory with SET as a special case under steady-state conditions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Learning the time between important events is a fundamental
feature of cognition. Humans and other animals can readily
learn the timing of upcoming rewards and adapt their behaviour
accordingly (Buhusi & Meck, 2005; Grondin, 2010). A range of
psychological and computational theories have been proposed
for interval timing (Gibbon, 1977; Grossberg & Schmajuk, 1989;
Killeen & Fetterman, 1988; Ludvig, Sutton, & Kehoe, 2008;
Machado, Malheiro, & Erlhagen, 2009; Simen, Rivest, Ludvig, Balci,
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& Killeen, 2013; Staddon & Higa, 1999) which succeed at capturing
the broad outlines of timing behaviour, but they often flounder
when dealingwith the statistics of themicro-structure of real-time
responding.

Particularly vexing for timing models are the behavioural pat-
terns when predictably-timed rewards are occasionally omitted,
as in the peak procedure (Roberts, 1981). This peak procedure is
likely the most popular interval timing task. Although major tim-
ingmodels such as Scalar Expectancy Theory (SET) (Gibbon, 1977),
Behavioural Theory of Timing (BeT) (Killeen & Fetterman, 1988),
Learning to Time (LeT) (Machado, 1997; Machado et al., 2009) and
Multiple Time Scales (MTS) (Staddon & Higa, 1999) can reproduce
the global averaged behaviour in this task, very few models have
been able to account for the pattern of behaviour observed in in-
dividual trials. The notable exception is SET, which provides good
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quantitative fits to animal data (Church,Meck, &Gibbon, 1994) and
remains the theory of choice for explaining static timing phenom-
ena.

Recently, a series of studies have adapted the classic drift–
diffusion model (DDM) used to explain the dynamics of real-
time decision-making in behaviour and the brain (Gold & Shadlen,
2007; Ratcliff, 1978; Voss, Nagler, & Lerche, 2013) to interval
timing (Luzardo, Ludvig, & Rivest, 2013; Rivest & Bengio, 0000;
Simen, Balci, de Souza, Cohen, & Holmes, 2011a; Simen et al.,
2013). The Time-adaptive DDM (TDDM) explains timing as the
result of a noisy drift–diffusion process with an adaptive drift rate,
which is adjusted based on the time interval observed. The TDDM
has a plausible neural implementation, in that the formalism is
also a mathematical approximation of the net effect of excitation
and inhibition in the activity of a pool of neurons (Simen et al.,
2011a). The model builds on earlier theories, such as SET, by
adopting a different, more complete mathematical formulation
that allowsmodelling the trial-by-trial dynamics of timing (i.e., the
learning), while still explaining core properties of interval timing
(such as timescale invariance). The general modular architecture
(accumulator, memory storage and decision rules) is preserved,
however, raising interesting questions as to the exact formal
relationship between the TDDM and SET.

The TDDMhas been successfully applied to some key features of
interval timing.Most notably, it can account for the scalar property,
a ubiquitous feature of timing data where the distribution of
response times scales with the interval being timed. Themodel has
also been shown to learn quickly and to reproduce the behaviour
observed in fixed-interval schedules (Rivest & Bengio, 0000), the
bisection procedure (Balcı& Simen, 0000), and tasks where time
intervals are changing either randomly (Simen et al., 2011a) or
cyclically (Luzardo et al., 2013), but has been only cursorily applied
to the aggregate data in the peak procedure thus far (Simen et al.,
2013).

One of the main advantages of a mathematical model is
the capacity to derive precise quantitative predictions from
as few assumptions as possible. In this respect, the TDDM
is particularly well placed among other timing models. As
previously demonstrated (Simen et al., 2013), Weber’s law, which
in the context of interval timing manifests itself as a constant
coefficient of variation (CV), follows from adjustmentsmade to the
parameters of the inverse Gaussian distribution predicted by the
model. In contrast, SET’s main theoretical component – a Poisson
pacemaker – cannot by itself produce a constant CV. The usual
solution is to add an assumption that the noise in the memory for
the remembered intervals is so large as to overcome the noise in
the pacemaker. This solves the problem but at the cost of adding
an extra assumption and doing away with the Poisson pacemaker.

In this paper, we show that the TDDM can account for both
the global averaged response curve in the peak procedure—
and reproduce the statistics of behaviour in individual trials.
We demonstrate this first analytically, through a new simplified
formulation of TDDM’s stationary properties, which we then show
is equivalent to a constrained version of SET. The analytical results
from the simplified model are then validated through simulations
with the complete TDDM formulation.

These results extend the range of phenomena for which the
TDDM can account and suggest that the Poisson pacemaker
postulated by SET – but not actually used – may be substituted
by the result of an opponent Poisson process (Simen et al., 2013).
Furthermore, and in light of previous successes, these results
suggest there might be a single comprehensive drift–diffusion-
based theory of decision making and timing, which could cover
both the steady-state properties as well as the learning dynamics.

The paper next reviews the studies that have examined
the patterns of correlations in single-trial analyses of the peak

procedure. We then revisit the TDDM and develop a simplified
stochastic model approximating TDDM’s stationary properties.
Given that formulation, the simplest possible extension of TDDM
to support start and stop behaviours is analytically derived. This
simplified formulation is shown to be equivalent to a constrained
version of SETwith two thresholds (Church et al., 1994), and shown
to be a good approximation of the full TDDM through simulations.
Finally, some predictions are made with the full TDDM about
possible sequential effects in the peak procedure.

1.1. Peak Procedure

In the peak procedure subjects are first trained on a fixed-
interval (FI) schedule where the first response after an interval
has elapsed since the appearance of a stimulus produces a reward
(see diagram on the left in Fig. 1). When behaviour on FI trials
has stabilized, peak trials are then introduced. These peak trials
are interspersed randomly between the normal FI trials, last 3
or 4 times longer, and are not rewarded. When peak trials are
first introduced during training, animals start responding as usual
before the FI time and then continue responding throughout the
whole (long) interval. With sufficient experience with the peak
trials, a different pattern emerges where responding eventually
ceases or lowers in frequency soon after the expected reward time
(Balci et al., 2009). This pattern of starts and stops that appears after
sufficient training is the focus of our analysis here.

The panel on the right in Fig. 1 shows an example of how, when
response rate is averaged over these peak trials even for a single
individual, there is an apparent smooth, symmetrical rise and fall
in responding around the time of reinforcement. When individual
trials are analysed, however, amore abrupt shift in response rate is
often observed. On many trials, animals start with a low response
rate, switch to a high response rate, and then go back down again
after the usual interval has elapsed and no reward has arrived
(Church et al., 1994; Gallistel, King, & McDonald, 2004; Gibbon
& Church, 1990). This three-state system (low–high–low) can be
characterized by its two transition points: the start (switch from
low to high) and stop (switch from high to low) times. In addition,
the middle time and duration of the high-frequency bout can be
calculated from the start and stop times.

A detailed analysis of these variables may shed light on the
internal mechanisms of interval timing and provide constraints
on current timing models. Table 1 collates the results from the
major studies in the literature that have examined the statistics
of these four variables. When possible we have separated the data
by FI duration and, in only one case, also by reward magnitude.
We did this because in a few cases the correlations were reported
to be significantly different as a function of FI duration (Gallistel
et al., 2004) and reward magnitude (Balc, Wiener, Cavdaroğlu,
& Branch Coslett, 2013), although this was not the norm. Of
particular note are the coefficients of variation of each variable
and their correlations. Note the strong similarity in the correlation
patterns across 4 different species. The key results are as
follows:

1. Positive correlation between start (S1) and stop (S2): ρ(S1, S2)
> 0;

2. Negative correlation between start and duration (D): ρ(S1,D)
< 0;

3. Positive correlation between duration andmiddle (M): ρ(D,M)
> 0;

4. Coefficient of variation (CV) for the start larger than for stop:
CVstart > CVstop.

The correlation results above mean that, in general, start times
that occur early/late into the trial are usually followed by early/late
stops. In contrast, the duration of the period of high frequency
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