
Journal of Mathematical Psychology 74 (2016) 46–57

Contents lists available at ScienceDirect

Journal of Mathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

Syntax and operational semantics of a probabilistic programming
language with scopes
Peter D. Bruza
Information Systems School, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Australia

h i g h l i g h t s

• Syntax and semantics of probabilistic programs (P-programs) which are motivated and adhere to first principle of Contextuality-by-Default.
• The issue of contextuality is related to generalized join operations in relational database theory.
• Operational semantics are provided in a denotational way using the well known database language SQL.

a r t i c l e i n f o

Article history:
Available online 14 July 2016

Keywords:
Probabilistic programming
Probabilistic modelling
Programming language semantics
Contextuality
Contextuality-by-Default

a b s t r a c t

Dzhafarov and Kujala (2015) have introduced a contextual probability theory called Contextuality-by-
Default (C-b-D) which is based on three principles. The first of these principles states that each random
variable should be automatically labelled by all conditions under which it is recorded. The aim of this
article is to relate this principle to block structured computer programming languages where variables
are declared local to a construct called a ‘‘scope’’. Scopes are syntactic constructs which correspond
to the notion of condition used by C-b-D. In this way a variable declared in two scopes can be safely
overloaded meaning that they can have the same label but preserve two distinct identities without the
need to label each variable in each condition as advocated by C-b-D. By means of examples, the notion
of a probabilistic program, or P-program, is introduced which is based on scopes. The semantics of P-
programs will be illustrated using the well known relational database language SQL which provides an
efficient and understandable operational semantics. A core issue addressed is how to construct a single
probabilistic model from the various interim probability distributions returned by each syntactic scope.
For this purpose, a probabilistic variant of the natural join operator of relational algebra is used to ‘‘glue’’
together interim distributions into a single distribution. More generally, this article attempts to connect
contextuality with probabilistic programming by means of relational database theory.

© 2016 Published by Elsevier Inc.

1. Introduction

Dzhafarov and Kujala (2015) have introduced a contextual
probability theory called Contextuality-by-Default (C-b-D) which
is based on three principles:

1. (Indexation by conditions): A random variable is identified
(indexed, tagged) by all conditions under which its realizations
are recorded.

2. (Unrelatedness): Two or more random variables recorded
under mutually incompatible conditions are stochastically
unrelated, i.e., they possess no joint distribution.

E-mail address: p.bruza@qut.edu.au.

3. (Coupling) A set of pairwise stochastically unrelated random
variables can be probabilistically coupled, i.e., imposed a joint
distribution on; the choice of a coupling is generally non-
unique.

It is curious with respect to the first principle that a similar line of
thinking emerged in the field of computer programming languages
in the nineteen sixties, particularly with the advent of a radical
new language called ALGOL-60. Before ALGOL-60, programming
languages such as FORTRAN featured variables that are always ac-
cessible fromany part of the program. These variableswere termed
‘‘global’’ variables because of this property. As programming lan-
guages evolved, global variables were seen as a cause of errors, or
‘‘bugs’’. For example, consider the pseudo-FORTRAN program de-
picted in Algorithm 1. It begins by declaring three variables over
real numbers. Function A (demarcated by ‘‘Function definition’’)
uses variable X as a parameter to compute the value of variable

http://dx.doi.org/10.1016/j.jmp.2016.06.006
0022-2496/© 2016 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jmp.2016.06.006
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmp.2016.06.006&domain=pdf
mailto:p.bruza@qut.edu.au
http://dx.doi.org/10.1016/j.jmp.2016.06.006


P.D. Bruza / Journal of Mathematical Psychology 74 (2016) 46–57 47

Y , i.e., Y = A(X). The main program (demarcated by ‘‘Main pro-
gram’’) starts with variable X which has been assigned the value
x1. Next the function A is invoked with this value. However, note
that the line X ← x2 in the function reflects an assignment of the
value x2 to variable X . Here the programmer has forgotten that the
intended use of variable X is an input variable to function A. Instead
the programmer is using X for some local calculations internal to
the function. Observe how this assignment unwittingly erases the
value of X that was supplied as input to the function when it is in-
voked. This error could flow into subsequent computations involv-
ing variable X which are used to calculate the value of the function
returned via the variable Z .

In summary, the error arises because variableX is being used for
functionally different purposes in each scope. Note how this error
contravenes the first principle of C-b-D because variable X is being
used in different conditions, and so two variables should be used,
rather than one. A programmer could easily fix this problem by
using two variables as advocated by C-b-D’s first principle. (See the
program fragment inAlgorithm2.) Note the use of two variablesX1
and X2, where each is used for a unique purpose.

Algorithm 1 Example FORTRAN Program 1
REAL X, Y, Z
X= x1
Y= A(X) ◃ Call function A
function A(X)

: ◃ Initial calculations
X= x2 ◃ Local value assignment
: ◃ calculations involving Z and X
A= Z ◃ return value
return

end function

Main program

Function
definition

Algorithm 2 Example FORTRAN Program 2
REAL X1, X2, Y, Z
X1= x1
Y= A(X1) ◃ Call function A
function A(X1)

: ◃ Initial calculations
X2= x2 ◃ Local value assignment
: ◃ calculations involving Z and X2
A= Z ◃ return value
return

end function

Main program

Function
definition

In order to help counter programming errors like the one just
described, so called block structured programming languageswere
developed. A block is sometimes referred to as a ‘‘lexical scope’’,
which is a syntactically delineated fragment of a program. The term
‘‘scope’’ refers to the set of program constructs such as variable
definitions that are valid within that particular syntactic fragment
of program code. As a consequence, the same variable name can
be used in two different scopes but preserve unique ‘‘identities’’,
where the identity is defined by its particular functional use in a
given scope. By way of illustration, consider the pseudo-program
code depicted in Algorithm 3. The variable X is a local variable to
both scopes 1 and 2 which are delineated syntactically via the use
of the terms begin and end. Both scopes assign a value to variable
Y which is defined globally and hence accessible to both scopes. In
each case the variable X has a unique function within each scope,
so the computations in the second scope may give a completely
different value to X than in the first scope.

Algorithm 3 Example Program 3
Var: Y
begin

Var: X
calculations involving X
Y ← X

end
Print("Answer 1 ",Y)
begin

Var: X
calculations involving X
Y ← X

end
Print("Answer 2 ",Y)

Scope 1

Scope 2

The intuitionwewill develop in this article is that classical prob-
ability theory is in some ways similar to obsolete programming
languages like FORTRAN where all variables are global. We con-
tend that as a consequence modellers are unwittingly predisposed
to the invalid assumption that a variable is ‘‘the same’’ across dif-
ferent conditions, which contravenes the first principle of C-b-D.
This can lead to potential ‘‘bugs’’ in the development of probabilis-
tic models.

For example, Fig. 1 depicts data taken from an experiment
designed to determine whether decisions regarding the relevance
of document summaries to a query scenario are subject to an
order effect (Bruza & Chang, 2014). An order effect is said to occur
when a decision made in a non-comparative context differs from
the decision taken in a comparative context. The corresponding
experiment comprises two conditions: In one condition the subject
is first asked to rate whether a document summary is topically
related to the query, followed by a rating of how well the subject
understands the information in the summary. This condition is
referred to as the ‘‘non-comparative’’ context for the decision on
topicality because the decision regarding topicality is made first
without reference to any other decisions. In the second condition,
the order of the ratings is reversed, i.e., the understandability of the
document summary is first rated followed by a rating on topical
relatedness of the summary to the query. This second condition is
referred to the ‘‘comparative’’ context for the decision on topicality
because a decision on understandability is asked first and may
influence the subsequent decision on topicality.

The presence of an order effect can inmany cases be determined
by a difference in marginal probabilities across the two conditions.
Consider the contingency tables in Fig. 1(a) and (b). Fig. 1(a)
represents the non-comparative condition in which topicality is
rated first. In this condition, the marginal probability that the
document is topically related to the query is summed across
understandability:

P(T = y) = P(T = y,U = y)+ P(T = y,U = n) (1)
= 0.40+ 0.28 (2)
= 0.68. (3)

In the comparative condition topicality is rated after understand-
ability (See Fig. 1(b)). Therefore in this condition, the marginal
probability that the document is topically related to the query is
calculated as follows:

P(T = y) = P(U = y, T = y)+ P(T = n, T = y) (4)
= 0.19+ 0.39 (5)
= 0.58. (6)

Note that the marginal probabilities are different (0.68 vs. 0.58).
Therefore, variable T should not be assumed to be the same vari-
able across the two experimental conditions. This fact is reflected
by the pseudo-program code presented in Algorithm 4.



Download	English	Version:

https://daneshyari.com/en/article/4931852

Download	Persian	Version:

https://daneshyari.com/article/4931852

Daneshyari.com

https://daneshyari.com/en/article/4931852
https://daneshyari.com/article/4931852
https://daneshyari.com/

