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a b s t r a c t

We study the set of no-signalling empirical models on ameasurement scenario, and show that the combi-
natorial structure of the no-signalling polytope is completely determined by the possibilistic information
given by the support of the models. This is a special case of a general result which applies to all polytopes
presented in a standard form, given by linear equations together with non-negativity constraints on the
variables.
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1. Introduction

This paper is concerned with the combinatorial structure of the
polytopes of probability models which are widely studied in quan-
tum information and foundations. Much current study focuses
on the no-signalling polytope (Pironio, Bancal, & Scarani, 2011;
Popescu, 2014), comprising those probability models whose cor-
relations are consistent with the constraints imposed by relativity,
and on characterizing the set of quantum correlations (Navascués,
Pironio, & Acín, 2008), which is contained within this polytope.

As iswell known, quantum correlations exceed thosewhich can
be achieved using classical, ‘‘local realistic’’ models. While Bell’s
original proof of this fact (Bell, 1964) used the detailed probabilistic
structure of the models arising from quantum mechanics to show
that they violated the Bell inequalities which hold for classical
models, subsequent proofs by Greenberger, Horne, Shimony, and
Zeilinger (1990); Greenberger, Horne, and Zeilinger (1989), Hardy
(1992, 1993), and others (Cabello, 2001; Mermin, 1990; Zimba &
Penrose, 1993), were inequality-free, and even probability-free. In
Abramsky and Brandenburger (2011), a hierarchy of forms of non-
locality, or more generally contextuality, was defined. The higher
levels, of logical contextuality (generalizing Hardy arguments),
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strong contextuality (generalizing GHZ arguments), and All-
versus-Nothing contextuality (Abramsky, Barbosa, Kishida, Lal,
& Mansfield, 2015), use only the possibilistic information from
the probability models. That is, they need only the information
about which events are possible (probability greater than zero) or
impossible (probability zero). In other words, they only refer to the
supports of the probability distributions. Passing from probability
models to their supports (the ‘‘possibilistic collapse’’) evidently
loses a great deal of information. In this paper, we show that
nevertheless, the combinatorial structure of the no-signalling
polytope is completely captured by the possibilistically collapsed
models, thus confirming that much structural information can in
fact be gained from these apparently much simpler models.

In more precise terms, the combinatorial type of a polytope
is given by its face lattice (Ziegler, 1995), the set of faces of the
polytope, ordered by inclusion. These face lattices have a rich
structure, and have been extensively studied in combinatorics.

Our main result can be stated as follows.

Theorem 1.1. Fix a ‘‘measurement scenario’’, specifying a set of
variableswhich can be observed ormeasured, the possible outcomes of
these measurements, and which variables are compatible and can be
measured together. We can then define a polytope N of no-signalling
probability models over this scenario. Call the face lattice of this
polytope F . Now let S be the set of supports or possibilistic collapses
of the models in N . S is naturally ordered by context-wise inclusion
of supports. Then there is an order-isomorphism F ∼= S.

Thus the combinatorial type of the polytope N is completely
determined by its possibilistic collapse.
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This result has a number of interesting corollaries. For example:

• All the models in the relative interior of each face F ∈ F have
the same support.

• The vertices of N are exactly the probability models with
minimal support in N . Moreover, there is only one probability
model in N for each such minimal support.

• Thus the extremal probability models are completely deter-
mined by their supports.

• The vertices ofN canbewritten as the disjoint union of thenon-
contextual, deterministic models – the vertices of the polytope
of classical models – and the strongly contextual models with
minimal support.

An empirical model has full support iff it is in the relative interior
of N . Consequently, any logically contextual model must lie in a
proper face of the polytope.

In fact, this result applies to a much wider class of polytopes.
Note that the no-signalling polytope, for any given measurement
scenario, is defined by the following types of constraint:

• Non-negativity;
• Linear equations: namely normalization, and the no-signalling

conditions.

In geometric terms, this says that N = H≥0 ∩ Aff(N ), where
Aff(N ) is the affine subspace generated by N , and H≥0 is the non-
negative orthant, i.e. the set of all vectors vwith v ≥ 0.

It is a standard result that every linear program can be put in a
‘‘standard form’’ of this kind (Matousek &Gärtner, 2007), so that its
associated polytope of constraints is of the typewe are considering.

Now our theorem in fact applies at this level of generality.

Theorem 1.2 (General Version). Let P be a polytope such that P =

H≥0 ∩ Aff(P). Let F (P) be the face lattice of P. Let S(P) be the set
of ‘‘supports’’ of points in P, i.e. 0/1-vectors where each positive
component of v ∈ P is mapped to 1, while each zero component is
left fixed. S(P) is naturally ordered componentwise, with 0 < 1. Then
there is an order-isomorphism F (P) ∼= S(P).

The structure of the remainder of the paper is as follows. In
Section 2, we provide background on measurement scenarios and
empirical models. In Section 3 we review some basic notions on
partial orders and lattices, and in Section 4, we review some stan-
dard material on polytopes. We prove our main result in Section 5,
and apply it to probability polytopes, in particular no-signalling
polytopes, in Section 6.

2. Measurement scenarios and empirical models

We shall give a brief introduction to the basic notions of
measurement scenarios and empirical models, as developed in
the sheaf-theoretic approach to contextuality and non-locality. For
further discussion, motivation and technical details, see Abramsky
and Brandenburger (2011) and Abramsky et al. (2015). An
extended introduction and overview is given in Abramsky (2015).

A measurement scenario is a triple (X, M,O) where:

• X is a set of variables which can be measured, observed or
evaluated.

• M is a family of sets of variables, those which can be measured
together. These form the contexts.

• O is a set of possible outcomes or values for the variables.

In this paper, we shall only consider finite measurement sce-
narios, where the sets X , O, and hence also M are finite. This

allows us to avoid measure-theoretic technicalities, while captur-
ing the primary objects of interest in quantum information and
foundations.

Given a measurement scenario (X, M,O), an empirical model
for this scenario is a family {eC }C∈M of probability distributions

eC ∈ Prob(OC ), C ∈ M.

Here we write Prob(X) for the set of probability distributions on a
finite set X . Such distributions are simply represented by functions
d : X → [0, 1] which are normalized:
x∈X

d(x) = 1.

The probability of an event S ⊆ X is then given by

d(S) =


x∈S

d(x).

The set OC is the set of all assignments s : C → O of outcomes
to the variables in the context C . Such an assignment represents a
joint outcome of measuring all the variables in the context.

Given eC ∈ Prob(OC ), and a subset U ⊆ C , we have the
operation of restricting eC to U by marginalization:

eC |U ∈ Prob(OU),

defined by:

eC |U(s) =


t∈OC , t|U=s

eC (t).

Here t|U is the restriction of the assignment t to the variables in U .
We say that an empirical model {eC }C∈M is no-signalling if for

all C, C ′
∈ M:

eC |C∩C ′ = eC ′ |C∩C ′ .

Thus an empirical model is no-signalling if the marginals from
any pair of contexts to their overlap agree. This corresponds to a
general form of an important physical principle. Suppose that C =

{a, b}, and C ′
= {a, b′

}, where a is a variable measured by an agent
Alice, while b and b′ are variables measured by Bob, who may be
spacelike separated from Alice. Then under relativistic constraints,
Bob’s choice of measurement – b or b′ – should not be able to
affect the distribution Alice observes on the outcomes from her
measurement of a. This is captured by saying that the distribution
on {a} = {a, b} ∩ {a, b′

} is the same whether we marginalize from
the distribution eC , or the distribution eC ′ . The general form of this
constraint is shown to be satisfied by the empirical models arising
from quantummechanics in Abramsky and Brandenburger (2011).

Example. Consider the following table:

A B (0, 0) (1, 0) (0, 1) (1, 1)
a b 0 1/2 1/2 0
a′ b 3/8 1/8 1/8 3/8
a b′ 3/8 1/8 1/8 3/8
a′ b′ 3/8 1/8 1/8 3/8

This represents a situationwhere Alice and Bob can each choose
measurement settings and observe outcomes. Alice can choose
the settings a or a′, while, independently, Bob can choose b or b′.
The total set of variables is X = {a, a′, b, b′

}. The measurement
contexts are

M = {{a, b}, {a′, b}, {a, b′
}, {a′, b′

}}.

Each measurement has possible outcomes in O = {0, 1}. The
matrix entry at row (a′, b) and column (0, 1) corresponds to the
event

{a′
→ 0, b → 1}.
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