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• The multi-stage decision model describes unfolding cognitive processes as piecewise diffusion processes.
• The model includes finite and infinite time horizons.
• The model is extended to account for non-constant decision boundaries.
• A Markov chain approach is implemented to account for nonstationary and nonlinear properties.

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Sequential sampling
Multiattribute
Attention switching time
Time schedule
Order schedule
Infinite and finite time horizon
Constant and non-constant boundaries
Ornstein–Uhlenbeck
Wiener
Birth–death chain

a b s t r a c t

The multi-stage decision model, aka multiattribute attention switching model, assumes a separate
sampling process for each attribute and switching attention from one attribute to the next in a sequential
fashion during one trial. Here the model is extended to finite and infinite time horizons and to non-
constant boundaries. For a finite time horizon the model predicts a probability of not deciding within the
available time. Two different families of non-constant boundaries are implemented, one with a nonlinear
decrease, one with a constant boundary at the beginning and a linear decrease towards the deadline.
Furthermore, it is shown how the stochastic process underlying each attribute of the multi-stage model
(Wiener or Ornstein–Uhlenbeck process) can be discretized by a birth–death chain to implement all
the relevant model features and how to provide speeded calculations. Several numerical examples are
provided demonstrating the effect of the order of attribute processing (order schedule) and boundary
properties. It is shown that, regardless of the time horizon or the non-constant boundaries, the order
schedule is the determinant to predict a consistent choice probability/choice response time pattern
including preference reversals and fast errors.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Sequential sampling models of decision making have become
the dominant approach to modeling decision processes in cogni-
tive science. These models are designed to account for all three
of the most basic dependent variables of cognitive psychology,
which include choice, decision time, and confidence. Their appli-
cation includes a variety of psychological tasks, from basic per-
ceptual decision to complex preferential choice tasks. From early
on, they were applied to identification and discrimination tasks
(e.g. Ashby, 1983; Edwards, 1965; Heath, 1981; Laming, 1968; Link
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& Heath, 1975; Pike, 1973); memory retrieval (e.g. Ratcliff, 1978;
Stone, 1960; Van Zandt, Colonius, & Proctor, 2000) and classifi-
cation (e.g., general recognition theory, Ashby, 2000; exemplar-
based random walk models of classification, Nosofsky & Palmeri,
1997) to account simultaneously for response times and accuracy
data.

They have also been used for preferential decision tasks (e.g.
decision field theory, Busemeyer & Townsend, 1993; and multi-
attribute decision field theory, Diederich, 1997, Diederich & Buse-
meyer, 1999) and value based decision (Krajbich & Rangel, 2011)
to account for choice response times and choice probabilities
interpreted as preference strength; judgment and confidence
ratings (Pleskac & Busemeyer, 2010); and to account for selling
prices, certainty equivalents, and preference reversal phenom-
ena (Busemeyer & Goldstein, 1992; Johnson & Busemeyer, 2005).
More recently, they have been applied to combining perceptional
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decision making and preference (e.g. Diederich, 2008; Diederich
& Busemeyer, 2006; Gao & Tortell, 2011; Rorie, Gao, McClelland,
& Newsome, 2010). Furthermore, these models have been closely
linked to measures from neuroscience such as multi-cell elec-
trode recordings, EEG, and fMRI (e.g. Churchland, Kiani, & Shadlen,
2008; Ditterich, 2006; Gold & Shadlen, 2007; Ratcliff, Hasegawa,
Hasegawa, Smith, & Segraves, 2007). Under fairly general condi-
tions, these models also represent the optimal rule for making se-
quentially sampled decisions that balance decision accuracy with
cost of sampling (e.g., Bogacz, Brown, Moehlis, Holmes, & Cohen,
2006; Edwards, 1965; Rapoport & Burkheimer, 1971). In practical
applications, sequential sampling models have been used to esti-
mate parameters representing basic components of the decision
process, such as discriminability, bias, and threshold criterion. In-
dividual differences in these parameters are used to investigate
how these parameters differ across age groups, psychopathology,
and other populations (e.g. Ratcliff, Thapar, & McKoon, 2010; Tha-
par, Ratcliff, & McKoon, 2003; White, Ratcliff, Vasey, & McKoon,
2010).

The basic idea of all sequential sampling models is that, when
a decision has to be made (a) noisy evidence for or against each
choice option is sequentially sampled across time, (b) this evidence
is accumulated across time, and (c) a final choice is made as soon
as the evidence reaches a threshold, or a deadline has to be met.
Choice probability is determined by the probability that evidence
level crosses a threshold first for one option before another, and
decision time is determined by the time required to reach a thresh-
old. Confidence ratings following a choice can be determined from
the strength of evidence that accumulates during a post-choice
time interval. There are many specific versions of sequential mod-
els that differ according to precisely how evidence is accumulated,
how the threshold criteria are set, and how confidence is derived.
One class of sequential sampling models assumes that evidence
for one option is at the same time evidence against the alterna-
tive option. Within this class, random walk models accumulate
evidence in discrete time whereas diffusion models accumulate
evidence in continuous time. The most commonly used version of
the diffusion model is the Wiener diffusion model that linearly ac-
cumulates evidence without any decay (Ratcliff, 1978), but others
include the Ornstein–Uhlenbeck model that linearly accumulates
evidence with decay (Busemeyer & Townsend, 1993; Diederich,
1997), and the leaky competing accumulator (LCA) model (Usher
& McClelland, 2001) that nonlinearly accumulates evidence with
decay. Another class of sequential sampling models is widespread
in psychology: accumulator and counter models. An accumula-
tor/counter is established for each choice alternative separately,
and evidence is accumulated in parallel. A decision is made as soon
as one counter wins the race to reach one preset criterion. The
accumulators/counters may or may not be independent. Poisson-
counter models are prominent examples but random walk and
diffusion models, one process for each alternative with a single
criterion (absorbing boundary) for each process, can also be em-
ployed. Other accumulator models such as LATER (linear approach
to threshold with ergodic rate) (Carpenter & Williams, 1995) and
LBA (Linear Ballistic Accumulator) (Brown & Heathcote, 2005) as-
sume a deterministic linear increase in evidence for one trial. Ran-
domness in responses occurs by assuming a normal distribution
across the linear accumulation rate. These models are not consid-
ered here further.

In the following we focus on random walk/diffusion models
with one process and two decision criteria. For a review of both
diffusionmodels and countermodels see Ratcliff and Smith (2004).

Despite the great progress that has been made with the
development and empirical testing of random walk/diffusion
models, there remain some important limitations. One important
limitation of many applications of random walk/diffusion models

is that a single integrated source of evidence is assumed to be
generating the evidence during the deliberation process leading
to a decision. In particular, the integrated source may be based on
multiple features or attributes, but all of these features or attributes
are assumed to be combined and integrated into a single source of
evidence, and this single source is used throughout the decision
process until a final decision is reached. There are exceptions
developed for very specific applications (e.g. Smith&Ratcliff, 2009;
Smith&Sewell, 2013) but by far, single sourcemodels predominate
the field.

Another limitation is that most random walk/diffusion models
cannot account for anticipatory and time-out responses. Trialswith
a shorter or longer than predefined response time threshold are
typically eliminated from the data set.

Finally, most models assume constant decision criteria across
the decision process. In some cases, however, it is possible that
with elapsed time the boundaries are collapsing, which in neu-
roscience has been called ‘‘urgent signals’’ (e.g. Churchland et al.,
2008; Ditterich, 2006) but see Hawkins, Forstmann, Wagenmak-
ers, Ratcliff, and Brown (2015). We refer also to Zhang, Lee, Van-
dekerckhove, Gunter, and Wagenmakers (2014) for the inclusion
of time-varying boundaries into a single-stage diffusion model.

In the following we will address these topics. To introduce
notation, we begin by describing a stochastic process with
its relation to psychological concepts. Second, the multi-stage
decision model (aka multiattribute attention switching (MAAS)
model) is introduced including time and order schedules, finite and
infinite time horizons, and non-constant boundaries. Obviously,
non-constant boundaries can also be applied to single-stage
models. Third, to allow for efficient predictions we discretize the
diffusion process (Wiener or Ornstein–Uhlenbeck) by a Markov
chain model. Finally, we show the predictions of the model for
various scenarios.

2. Sequential sampling approach

Sequential sampling models are stochastic processes, that is,
a collection of random variables, representing the evolution of
some system of random values over time. Two quantities are of
foremost interest to psychologists: (1) the probability that the
process eventually reaches one of the thresholds or boundaries for
the first time (the criterion to initiate a response), i.e., first passage
or exit probability; (2) the time it takes for the process to reach one
of the boundaries for the first time, i.e., first passage or exit time. The
former quantity is related to the observed relative frequencies, the
latter usually to the observed mean choice response times or the
observed choice response time distribution.

LetX(t)denote the randomvariable representing the numerical
value of the accumulated evidence at time t (for now we assume
thatwe are in a continuous-time, continuous-state situation). For a
binary choice between choice options A and B, the models assume
that the decision process begins with an initial state of evidence
X(0). This initial state may either favor option A (X(0) > 0) or
option B (X(0) < 0) or may be neutral with respect to A or B
(X(0) = 0), or can be given as a probability distribution.

Upon presentation of the choice options, the decision maker
sequentially samples information from the stimulus display over
time, retrieves information from memory, or forms preferences,
depending on the context. The small increments of evidence
sampled at any moment in time are such that they either favor
option A (dX(t) > 0) or option B (dX(t) < 0). The evidence is
incremented according to a diffusion process:

dX(t) = µ(X(t), t)dt + σ(X(t), t)dW (t).

Here, µ(x, t) is called the effective drift rate and describes the
instantaneous rate of expected increment change at time t and
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