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h i g h l i g h t s

• Many cognitive models neglect trial-by-trial variability in behavior.
• This can be overcome by assuming variability in model parameters.
• A simple method to effectively capture this variability is introduced.
• The goal is to link variability in model parameters with neuroimaging data.
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a b s t r a c t

It is known that behavior is substantially variable even across nearly identical situations. Many cognitive
models are not able to explain this intraindividual variability but focus on explaining interindividual
differences captured inmodel parameters. In sequential samplingmodels of decisionmaking, for instance,
one single threshold parameter value is estimated for every person to quantify howmuch evidence must
be accumulated for committing to a choice. However, this threshold may vary across trials even within
subjects and experimental conditions. Neuroimaging tools such as functionalmagnetic resonance imaging
(fMRI) or electroencephalography (EEG) can revealmoment-to-moment fluctuations in the neural system
that are likely to contribute to fluctuations in behavior. We propose that neural and behavioral variability
could be linked to each other by assuming and estimating trial-by-trial variability inmodel parameters. To
illustrate our proposal, we first highlight recent studies in model-based cognitive neuroscience that have
gone beyond correlating model predictions with neuroimaging data. These studies made use of variance
in behavior that remained unexplained by cognitive modeling but could be linked to specific fMRI or EEG
signals. Second, we specify in a tutorial a novel and efficient approach, how to extract such variance and to
apply it to neuroimaging data. Our proposal shows how the variability in behavior and the neural system
can provide a fruitful source of theory development in cognitive neuroscience.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Cognitive neuroscience and cognitive modeling pursue a
common goal, which is to identify the various mechanisms that
give rise to observable behavior. It is therefore not surprising
that their combination has become an extremely productive
research agenda. For example, model-based functional magnetic
resonance imaging (fMRI; O’Doherty, Hampton, & Kim, 2007) has
been applied to link activation in the brain’s reward circuitry,
including the ventral striatum and the ventromedial prefrontal

∗ Correspondence to: Department of Psychology, University of Basel, Mission-
sstrasse 62a, 4055 Basel, Switzerland.

E-mail address: sebastian.gluth@unibas.ch (S. Gluth).

cortex, to the parametric encoding of reward expectations and
reward prediction errors (Bartra, McGuire, & Kable, 2013; Clithero
& Rangel, 2014; Garrison, Erdeniz, & Done, 2013). Expected values
and prediction errors are particularly suitable for neuroimaging
data analysis, because they vary on a trial-by-trial basis when
using reinforcement learning (RL) paradigms. The predictions of
an RL model – that has been fitted to the choice data – are simply
regressed against the fMRI data, revealing which brain areas track
the development of expected values or prediction errors over the
course of the experiment (e.g., Daw, O’Doherty, Dayan, Seymour,
& Dolan, 2006; Gläscher, Hampton, & O’Doherty, 2009; Gluth,
Rieskamp, & Büchel, 2014; O’Doherty et al., 2004 and Pessiglione
et al., 2008).

Importantly, a person will perceive an identical decision
situation differently after receiving feedback, which leads to

http://dx.doi.org/10.1016/j.jmp.2016.04.012
0022-2496/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmp.2016.04.012
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
mailto:sebastian.gluth@unibas.ch
http://dx.doi.org/10.1016/j.jmp.2016.04.012


2 S. Gluth, J. Rieskamp / Journal of Mathematical Psychology ( ) –

learning and consequently to different behavior across trials.
In contrast to learning situations, however, many psychological
experiments use static environments, and potential changes in
cognitive processes from trial to trial are not accounted for. Even an
RLmodel does not predict any trial-by-trial variability, as long as no
learning takes place (e.g., if the feedback is fully predictable). In the
worst case, some models make deterministic predictions and do
not allow accounting for any formof variability. Traditionalmodels
of decision making under uncertainty, including expected utility
theory (Von Neumann & Morgenstern, 1947), prospect theory
(Kahneman & Tversky, 1979), but also some choice heuristics
(e.g., Brandstätter, Gigerenzer, & Hertwig, 2006), belong to this
category. Applying a naïve error theory allows formulating choice
predictions in terms of a probability distribution (Hey, 1995;
Loomes & Sugden, 1995; McFadden, 2001; Rieskamp, 2008).
Beyond that, sequential sampling models of decision making
assume that stochastic sampling of evidence underlies the decision
process, which allows probabilistic predictions of response times
(Busemeyer & Townsend, 1993; Smith & Ratcliff, 2004). However,
even probabilistic choice models make identical probabilistic
predictions for identical choice situations, so that if the probability
of choosing option A over alternative option B is predicted to be,
say, 60% in one trial, it will also be 60% when the same situation
is encountered a few trials later. That the subject might actually
choose A in the first but B in the second situation (instead of B and
then A, or A in both trials, or B in both trials) has to be attributed to
unsystematic noise the model cannot explain.

More precisely, when model parameters are assumed to be
fixed for specific conditions or persons, variability in behavior
is difficult to explain (Lee & Wagenmakers, 2014; Lewandowsky
& Farrell, 2011). In sequential sampling models of decision
making, for instance, a single decision threshold parameter
value is estimated that reflects the amount of evidence required
to make a choice (Bogacz, Brown, Moehlis, Holmes, & Cohen,
2006; Smith & Ratcliff, 2004). This parameter might vary across
different conditions, for example, when either speed or accuracy is
emphasized. Butwithin a single condition the threshold is assumed
to be fixed, and its value is usually estimated based on hundreds or
even thousands of trials (e.g., Ratcliff & Rouder, 1998). Naturally,
the behavior varies across these trials, and the sequential sampling
model ‘‘explains’’ this by the variability of the stochastic process
of sampling information. However, we argue that the variability
in behavior across trials could also be due and explained by the
variability of model parameters such as a decision threshold (see
also Craigmile, Peruggia, & Van Zandt, 2010 and Zandbelt, Purcell,
Palmeri, Logan, & Schall, 2014). Moreover, behavioral variability
should in principle be reflected in variability of the recorded brain
data (see also Glimcher, 2005). We suggest that the variability of
behavior and theneural systemcould bematched to each other and
might offer important insights about the neurocognitive system
and the models trying to explain it.

Indeed, recent studies in model-based cognitive neuroscience
have tried to exploit this trial-by-trial variability by first contrast-
ing a model’s average predictions with the participants’ actual be-
havior in single trials (i.e., response times [RTs] and/or choices)
and then using this prediction–observation discrepancy to inform
the analysis of neuroimaging data (Gluth, Rieskamp, & Büchel,
2012;Gluth, Sommer, Rieskamp,&Büchel, 2015; vanMaanen et al.,
2011). The central aim of this review and tutorial is to present a
generalization of this approach to illustrate its applicability to (al-
most) any form of cognitivemodel and (almost) any form of neural
or physiological data.

The rest of the article is structured as follows: In Section 2,
we summarize neuroimaging studies of human decision making
that captured trial-by-trial deviations from model predictions to
analyze the brain data as outlined above; in Section 3, we provide

a general formalization of this approach rooted in Bayesian theory,
as well as an accompanying example to facilitate understanding;
in Section 4 we discuss and exemplify parameter recovery
simulations as a precondition for the successful application of
our technique; in Section 5 we specify further requirements and
recommendations for models and neuroimaging data; Section 6
provides a comparison with alternative ways to test for trial-
by-trial effects; finally, Section 7 concludes with a discussion of
potential results that can be obtained with this technique and
their implications for further developments of theories in cognitive
neuroscience.

2. Model-based neuroimaging studies of parameter variability

Whereas reinforcement learning studies exploited the fact
that many learning components such as reward expectations,
prediction errors, but also learning rates and various forms of
uncertainty are naturally changing (Behrens, Woolrich, Walton,
& Rushworth, 2007; Boll, Gamer, Gluth, Finsterbusch, & Büchel,
2013; Krugel, Biele, Mohr, Li, & Heekeren, 2009; McGuire, Nassar,
Gold, & Kable, 2014; Payzan-LeNestour, Dunne, Bossaerts, &
O’Doherty, 2013), models of decisionmaking (including sequential
sampling models) face the problem that predictions often remain
constant from trial to trial.1 In fact, observations are assumed to
be generated by the same probability distribution (e.g., a Wiener
diffusion process) and to bemutually independent; that is, they are
independent and identically distributed (i.i.d.) random variables
(Luce, 1986). Accordingly, early model-based fMRI studies on
perceptual decision making restricted the association of cognitive
modeling and brain data to correlations across subject (Forstmann
et al., 2008). In particular, Forstmann and colleagues used the linear
ballistic accumulator (LBA) model (Brown & Heathcote, 2008) to
model choices and RTs in a random dot motion task with different
conditions that prioritized speed, accuracy, or neither. The LBA
was estimated so as to allow specifying the level of response
caution (i.e., the distance between the decision threshold and the
upper end of the starting point distribution) in speed and accuracy
conditions separately. As expected, subjects were less cautious in
the speed condition. At the time when people were instructed to
respond quickly or accurately in the upcoming trial, the authors
recorded the fMRI signal in the pre-supplementary motor area
(pre-SMA) and the caudate nucleus (CN). They reported a negative
correlation between the difference in response caution in the
speed and accuracy conditions and the difference in fMRI signal
in pre-SMA and CN. Their conclusion was that a higher increase in
baseline activity in the pre-SMA and CNmediated particularly fast
decisions in the speed condition.

Forstmann et al.’s (2008) results clearly indicate an involvement
of the pre-SMA and CN in response caution. However, if we con-
sider the possibility that the decision threshold does not stay con-
stant across trials within a specific condition, then the study leaves
open whether these brain structures could also be important for
threshold adjustments on a trial-by-trial level. The following hypo-
thetical example illustrates the point: The average ‘‘brain activity’’
(across all trials and subjects) in the pre-SMA/CN could be xa = 10
in the accuracy condition and xs = 20 in the speed condition; the
average value of response caution parameter could be πa = 20 in

1 Ratcliff’s drift diffusion model assumes across-trial variability in the drift rate,
starting point, and non-decision time (Ratcliff, 1978; Ratcliff & McKoon, 2008).
However, the model only estimates the ‘‘average’’ amount of across-trial variability
and does not specify the amount or direction of variability in single trials. Thus,
it makes no trial-by-trial predictions of how the parameter values vary. More
recent modeling techniques have been developed to address this point (Turner, van
Maanen, & Forstmann, 2015; Wiecki, Sofer, & Frank, 2013), which we discuss in
more detail in Section 6.
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