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Relating accumulator model parameters and neural dynamics
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HIGHLIGHTS

o Neural analyses are used to quantify changes in accumulator model dynamics.

e Accumulator model dynamics distinguish models that behavior alone cannot.

e However, analysis of dynamics alone cannot pinpoint underlying model parameters.
e Joint consideration of behavior and neural dynamics provides maximal constraint.
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Accumulator models explain decision-making as an accumulation of evidence to a response threshold.
Specific model parameters are associated with specific model mechanisms, such as the time when
accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms
determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive
modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary
when a model is fitted to observed behavior. The recent identification of neural activity with evidence
accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis
of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the
relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics.
To understand what kinds of inferences can be made about decision-making mechanisms based on
measures of neural dynamics, we measured simulated accumulator model dynamics while systematically
varying model parameters. In some cases, decision-making mechanisms can be directly inferred from
dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other
cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting
the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can
provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing
inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural
dynamics provides the most powerful approach to understand decision-making and likely other aspects
of cognition and perception.
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Cognitive modeling allows us to infer the mechanisms under-
lying perception, action, and cognition based on observed behav-
ior (Busemeyer & Diederich, 2009; Farrell & Lewandowsky, 2010;
Townsend & Ashby, 1983). In the domain of decision-making, ac-
cumulator models (also called sequential-sampling models) provide
the most complete account of behavior for many different types of
decisions (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Brown
& Heathcote, 2005, 2008; Laming, 1968; Link, 1992; Link & Heath,
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1975; Nosofsky & Palmeri, 1997; Palmer, Huk, & Shadlen, 2005;
Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004; Reddi & Carpen-
ter, 2000; Shadlen, Hanks, Churchland, Kiani, & Yang, 2006; Smith
& Vickers, 1988; Usher & McClelland, 2001; Vickers, 1979). These
models assume that evidence for a particular response is integrated
over time by one or more accumulators. A response is selected
when evidence reaches a response threshold. Variability in the
time it takes for accumulated evidence to reach threshold accounts
for variability in choice probabilities and response times observed
in a broad range of decision-making tasks.

Particular accumulator model parameters represent distinct
decision-making mechanisms (Fig. 1). An encoding time (t,)
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parameter defines the time for sensory and perceptual processing,
a drift rate parameter (v) defines the mean rate of evidence
accumulation, a starting point parameter (z) determines the initial
state of an accumulator, a threshold parameter (a) defines the
level of evidence that must be reached before a response is
initiated, and a motor response time (t,,) parameter defines the
time to execute a response (Fig. 1(A)). By identifying parameter
values that maximize the match between observed and predicted
behavior (e.g. Vandekerckhove & Tuerlinckx, 2007), the models can
reveal the mechanisms underlying variation in decision-making
behavior across different experimental conditions. For example,
manipulations of speed versus accuracy instructions affect the
response threshold (Brown & Heathcote, 2008; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008), manipulations of experience
(Nosofsky & Palmeri, 1997; Palmeri, 1997; Petrov, Van Horn,
& Ratcliff, 2011; Ratcliff, Thapar, & McKoon, 2006) or stimulus
strength (Palmer et al., 2005; Ratcliff & McKoon, 2008; Ratcliff
& Rouder, 1998) affect drift rate, and manipulation of dynamic
stimulus noise prolong encoding time (Ratcliff & Smith, 2010).
In addition, many accumulator models assume that some of
these mechanisms can vary over trials to explain within-condition
variability in behavior, with additional parameters defining the
degree of variability in other parameters.

Recent neurophysiological and neuroimaging studies have
identified potential linking propositions (Schall, 2004; Teller,
1984) between accumulator models and measures of brain
activity (Forstmann, Ratcliff, & Wagenmakers, 2015; Forstmann,
Wagenmakers, Eichele, Brown, & Serences, 2011; Gold & Shadlen,
2007; Palmeri, Schall, & Logan, 2014; Shadlen & Kiani, 2013; Smith
& Ratcliff, 2004). Different approaches have established different
kinds of connections between models and neural measures
(Turner, Forstmann, Love, Palmeri, & Van Maanen, 2017). One
approach has been to fit a model to behavior, and use the fitted
parameters as a tool for interpreting or identifying neural signals.
Correlating model parameters and neural signals across subjects
and conditions can provide insight into what brain regions might
be involved in determining the model threshold, drift rate, and
non-decision time (Forstmann et al., 2008; Heekeren, Marrett,
Bandettini, & Ungerleider, 2004; van Maanen et al., 2011; White,
Mumford, & Poldrack, 2012). Another approach has been to jointly
model behavioral data and neural responses together, significantly
constraining parameter estimates (Cassey, Gaunt, Steyvers, &
Brown, 2016; Turner, van Maanen, & Forstmann, 2015).

Another line of work suggests that the firing rates of certain
neural populations directly represent the evidence accumulation
process proposed in the accumulator model framework. In these
studies, animals are trained to perform perceptual decision-
making tasks and neural activity is recorded from one or more
intracranial electrodes simultaneously while animals perform
the task. Neural responses can then be analyzed aligned to the
timing of task events (e.g., stimulus onset) or the behavior of
the animal (e.g., response initiation). Specifically, the firing rates
of neurons within a distributed network of areas including pre-
frontal cortex (Ding & Gold, 2012; Hanes & Schall, 1996; Heitz
& Schall, 2012; Kiani, Cueva, Reppas, & Newsome, 2014; Kim &
Shadlen, 1999; Mante, Sussillo, Shenoy, & Newsome, 2013; Purcell
et al,, 2010; Purcell, Schall, Logan, & Palmeri, 2012), superior
colliculus (Horwitz & Newsome, 1999; Ratcliff, Cherian, & Segraves,
2003; Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves, 2007),
posterior parietal cortex (Churchland, Kiani, & Shadlen, 2008; de
Lafuente, Jazayeri, & Shadlen, 2015; Mazurek, Roitman, Ditterich, &
Shadlen, 2003; Roitman & Shadlen, 2002), premotor cortex (Cisek,
2006; Thura & Cisek, 2014; Thura, Cos, Trung, & Cisek, 2014), and
basal ganglia (Ding & Gold, 2010) exhibit dynamics consistent
with accumulation of perceptual evidence. Following the onset of
a stimulus, the firing rates of these neurons gradually rise over
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Fig. 1. Expected relationships between accumulator model parameters, model dy-
namics, and neural dynamics. A: Illustration of accumulator model parameters. Four
primary parameters determine the decision-making mechanisms: encoding time
(t.) defines the time for perceptual processing preceding evidence accumulation,
drift rate (v) defines the mean rate of accumulation, starting point (z) determines
the initial state, threshold (a) defines the level of evidence that must be reached
before a response is initiated, and motor response time (t,;) defines the time to exe-
cute a response. Four corresponding stochastic parameters (s with subscript) define
the across-trial variability for each parameter (see Section 1). In these simulations,
motor time was always assumed to be zero. B: Example model dynamics for five
simulated trials using identical parameters. During encoding time, the model activ-
ity is fixed at the starting point. Following encoding time, evidence is sampled from
a distribution with mean v and standard deviation s (within-trial noise, inset) and
accumulated over time. Response times (RTs, arrows) are the sum of encoding time,
the time needed for accumulated evidence to reach threshold (i.e., decision time).
Due to within-trial noise, even the same set of parameters produces variability in
both RT and the evidence accumulation trajectory. C: Example simulated single-unit
activity and measures of neural dynamics. Top panels show that neural activity on
individual trials given by the spike discharge times (black dots) aligned on stim-
ulus onset (left) or RT (right; red circles). Individual spike trains are highly noisy,
but the average firing rate over trials reveals underlying structure in the dynamics
(gray lines, bottom). Four measures of neural dynamics are commonly applied to
make inferences about model parameters. The onset is hypothesized to correspond
to the encoding time, the growth rate is hypothesized to correspond to the drift rate,
the baseline is hypothesized to correspond to the starting point, and the activity at
RT is hypothesized to correspond to the threshold. Dashed black lines illustrate the
computation of growth rate based on the slope of the line connecting the activity
at onset to activity at RT. Neural spike times were simulated according to a time
inhomogeneous Poisson process with a rate parameter determined by simulated
accumulator model dynamics.

time depending on the animal’s upcoming choice. Consistent with
expected accumulator model dynamics, the rate of rise depends
on stimulus strength and RT. Importantly, activity converges
to a fixed firing rate shortly before the response is initiated
regardless of the stimulus and RT, consistent with a threshold
mechanism for decision termination (Hanes & Schall, 1996). The
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