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h i g h l i g h t s

• Interactive cognitive neuroscience approach is demonstrated using DFT.
• DNF models fitted trends in behavioral and neural data to response selection task.
• Neural population dynamics in DNF model were mapped to particular brain regions.
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a b s t r a c t

A fundamental challenge in cognitive neuroscience is to develop theoretical frameworks that effectively
span the gap between brain and behavior, between neuroscience and psychology. Here, we attempt to
bridge this divide by formalizing an integrative cognitive neuroscience approach using dynamic field
theory (DFT). We begin by providing an overview of how DFT seeks to understand the neural population
dynamics that underlie cognitive processes through previous applications and comparisons to other
modeling approaches. We then use previously published behavioral and neural data from a response
selection Go/Nogo task as a case study for model simulations. Results from this study served as the
‘standard’ for comparisons with a model-based fMRI approach using dynamic neural fields (DNF). The
tutorial explains the rationale and hypotheses involved in the process of creating the DNF architecture
and fitting model parameters. Two DNF models, with similar structure and parameter sets, are then
compared. Both models effectively simulated reaction times from the task as we varied the number of
stimulus–response mappings and the proportion of Go trials. Next, we directly simulated hemodynamic
predictions from the neural activation patterns from each model. These predictions were tested using
general linear models (GLMs). Results showed that the DNFmodel that was created by tuning parameters
to capture simultaneously trends in neural activation and behavioral data quantitatively outperformed a
Standard GLM analysis of the same dataset. Further, by using the GLM results to assign functional roles to
particular clusters in the brain, we illustrate how DNF models shed new light on the neural populations’
dynamics within particular brain regions. Thus, the present study illustrates how an interactive cognitive
neuroscience model can be used in practice to bridge the gap between brain and behavior.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Although great strides have been made in understanding the
brain using data-driven methods (Smith, Fox, Miller, Glahn, Fox,
& Mackay, 2009), human neuroscience will need sophisticated
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theories (Gerstner, Sprekeler, & Deco, 2012). But what would a
good theory of brain function look like? Addressing this question
requires theories that bridge the disparate scientific languages of
neuroscience and psychology.

Turner, Forstmann, Love, Palmeri, and Van Maanen (2016)
described three categories of approaches to this issue usingmodel-
based cognitive neuroscience that bridge the gap between brain
and behavior by bringing together fMRI data and cognitive models
(Turner et al., 2016). The first approach uses neural data to guide
and inform a behavioral model, that is, a model that mimics
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features of responses such as reaction times and accuracy. One
example of this approach is the Leaky Competing Accumulator
model by Usher and McClelland (Usher & McClelland, 2001).
This is a mechanistic model for evidence accumulation, which
incorporates well-known properties of neuronal ensembles such
as leakage and lateral inhibition. The model provides a good fit
for a range of behavioral data, for example, time–accuracy curves
and the effects of the number of alternatives on choice response
times. Unfortunately, as remarked by Turner et al., thismechanistic
approach stops short of establishing any direct connection to the
dynamics of particular neural circuits or brain areas.

The second type of approach uses a behavioral model and
applies it to the prediction of neural data. One example of this
approach is Rescorla and Wagner’s (1972) model of learning
conditioned responses. In this model, the value of a conditioned
stimulus is updated over successive trials according to a learning
rate parameter. The model produces trial-by-trial estimates of the
error between the conditioned and unconditioned stimuli. This
measure can then be used in general linear models to detect
patterns matching the model predictions within fMRI data. The
method potentially allows one to identify neural processes that are
not directly measurable through behavioral results (Davis, Love,
& Preston, 2012; Mack, Preston, & Love, 2013; Palmeri, Schall,
& Logan, 2015). However, a drawback of this model-based fMRI
approach is that it does not explain cognitive states encoded by
patterns of activation distributed over multiple voxels in the brain.

The last, and most difficult approach is an integrative cognitive
neuroscience approach where a model simultaneously predicts
behavioral and neural data. That is, the model explains what
the brain is doing in real-time to generate specific patterns of
fMRI and behavioral data. Turner et al. acknowledge that there
are relatively few examples in this category. For instance, they
highlight recent papers that use cognitive architectures such
as ACT-R (‘Adaptive Control of Thought-Rational’) to capture
simultaneously fMRI and behavioral data (Anderson, Matessa, &
Lebiere, 1997; Borst & Anderson, 2013; Borst, Nijboer, Taatgen,
Van Rijn, & Anderson, 2015). Althoughwe agree that this approach
has immense potential, this is a relatively limited example of
an integrative cognitive neuroscience approach because ACT-R is
not a neural process model. Thus, ACT-R does not capitalize on
constraints regarding how real brains actually work.

An alternative approach that does capitalize on neural con-
straints was proposed by Deco, Rolls, and Horwitz (2004). These
researchers used integrate-and-fire attractor networks to simulate
neural activity from a ‘where-and-what’ task. The model includes
several populations of simulated neurons to reflect networks tuned
to specific objects, positions, or combinations thereof. The authors
then define a local field potential (LFP) measure from each neu-
ral population by averaging the synaptic flow at each time step. To
generate a BOLD response, they convolved the LFPmeasurewith an
impulse response function. Although one version of themodel was
able to approximate single neuron recordings from a prior study,
as well as a measured fMRI pattern in dorsolateral prefrontal cor-
tex, other fMRI patterns from the ventrolateral prefrontal cortex
were notmodeled.Moreover, comparisons to fMRI dataweremade
qualitatively via visual inspection. No attempt was made to quan-
titatively relate the measures. Finally, behavioral data from this
study were not a central focus. Such issues are relatively common
when modeling relies on biophysical neural networks due to the
immense computational challenges of simulating such networks.
Appropriate partitioning of the parameter space and estimation of
model parameters are, in general, difficult steps of this approach
(see Anderson, 2012; Turner et al., 2016).

Inspired by this work, Buss, Wifall, Hazeltine, and Spencer
(2013) adapted this approach to simultaneously model behavioral
and fMRI data from a dual-task paradigm (Buss,Wifall, Hazeltine, &

Spencer, 2013). They first constructed a dynamic neural field (DNF)
model of the dual-task paradigm reported by Dux and colleagues
(Dux et al., 2009). The model quantitatively fit a complex pattern
of reaction time changes over learning, including the reduction
of dual-task costs over learning to single task levels. These
researchers then generated a LFP measure from each component
of the neural model and convolved the LFPs with an impulse
response function to generate BOLD responses from themodel. The
DNF model captured key fMRI results from Dux et al., including
the reduction of the amplitude of the hemodynamic response
in inferior frontal junction in dual-task conditions over learning.
Moreover, Buss et al. contrasted competing predictions of the DNF
model and ACT-R, showing that changes in hemodynamics over
learning predicted by the DNF model matched fMRI results from
Dux et al., while predictions from ACT-R did not.

It is important to highlight several key points achieved by Buss
et al. (2013). First, the DNF model simulated neural dynamics in
real time. The dynamics created robust ‘peaks’ of activation that
were directly linked to behavioral responses by the model, and
these responses quantitatively captured a complex pattern of re-
action times over learning. Second, the same neural dynamics that
quantitatively fit behavior also simulated observed hemodynamics
measured with fMRI. Finally, Buss et al. demonstrated the speci-
ficity of these findings by contrasted predictions of two theories.
Thus, their work constitutes a notable example of an integrative
cognitive neuroscience approach using a neural processmodel that
capitalizes on constraints regarding how brains work.

The current paper builds on the above example, by formal-
izing an integrative cognitive neuroscience approach using dy-
namic neural fields. Our paper is tutorial in nature, walking the
reader through each step of this model-based cognitive neuro-
science framework. We extend the work of Buss et al. (2013) by
(1) formalizing several steps regarding the calculation of LFPs from
dynamic neural fields and the generation of BOLD predictions;
(2) adding new methods to quantitatively evaluate BOLD predic-
tions from dynamic neural field models using general linear mod-
els (GLM), inspired by other model-based fMRI approaches; and
(3) adding new methods to identify model-based functional net-
works from group-level GLM results. These methods allow for ef-
fectively identifying where particular neural patterns live in the
brain, as well as specifying their functional roles.

The paper proceeds as follows. We begin with a brief
introduction to dynamic field theory. This places our model-based
approach within a broader context for readers who might be
less familiar with this theoretical approach. Next, we introduce
the particular case study we will use throughout the paper, that
is, the particular behavioral and fMRI dataset that serves as the
basis for the tutorial. We then discuss the DNF model that we
used to capture simultaneously behavioral and neural data from
this study, explaining where this model comes from and how
we approached the simulation case study. The presentation will
highlight key issues that theoreticians face when adopting an
integrative cognitive neuroscience approach. Next, we present
behavioral fits of the data and discuss strengths and limitations of
the DNF model at this level of analysis.

After considering the behavioral data, we introduce a step-by-
step guide to generating hemodynamic predictions from dynamic
neural field models. We then discuss how to evaluate these
predictions using general linear modeling (GLM).We first evaluate
the model predictions at the individual level. We then move
to the group level, showing how our approach can be used
to identify model-based functional networks. To evaluate these
networks, we compare our approach to standard fMRI analyses,
highlighting examples where the DNF model sheds interesting
light on the functional roles of particular brain regions. The tutorial
concludes with a general evaluation of our model-based approach,
highlighting strengths, weaknesses, and future directions.
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