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h i g h l i g h t s

• The Ratcliff diffusion model contains normally distributed drift rates.
• Analytic solution for the cumulative distribution function of the diffusion model.
• The analytical solution is highly efficient and ensures high accuracy.
• Implementations in R statistical language and MATLAB included as online Appendix C.
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a b s t r a c t

The Ratcliff diffusion model is now arguably the most widely applied model for response time data. Its
major advantage is its description of both response times and the probabilities for correct as well as incor-
rect responses. The model assumes aWiener process with drift between two constant absorbing barriers.
The first-passage times at the upper and lower boundary describe the responses in simple two-choice
decision tasks, for example, in experiments with perceptual discrimination or memory search. In appli-
cations of the model, a usual assumption is a varying drift of the Wiener process across trials. This extra
flexibility allows accounting for slow errors that often occur in response time experiments. So far, the pre-
dicted response time distributionswere obtained by numerical evaluation as analytical solutionswere not
available. Here, we present an analytical expression for the cumulative first-passage time distribution in
the diffusionmodel with normally distributed trial-to-trial variability in the drift. The solution is obtained
with predefined precision, and its evaluation turns out to be extremely fast.

© 2016 Elsevier Inc. All rights reserved.

1. Background

The diffusion model for response times was proposed about
40 years ago (Ratcliff, 1978) as a continuous-time, continuous-
state generalization of earlier discrete-time random walk models
(Laming, 1968; Link & Heath, 1975). One of its major advantages
over standard response time (RT) analyses (i.e., comparison of
mean RTs) is the simultaneous analysis of both response time and
accuracy. This avoids problems of speed–accuracy trade-offs that
are possible confounders of the results and generally difficult to
interpret (e.g., Pachella, 1974).

The standard diffusion model assumes a Wiener process with
drift v and diffusion coefficient σ 2 (typically fixed either at σ 2

= 1
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or σ 2
= 0.01 because it only scales the other parameters) evolv-

ing over time in the presence of two absorbing barriers (located at
0 and a > 0). Each barrier is associated with one response alter-
native. The barriers can be viewed as response criteria, that is, the
distribution of the first passage time to either barrier produces the
predicted response times distribution for the response alternative
associated with the barrier.

Although the model is well motivated and the approach is
appealing, two issues remain that are often seen asmajor obstacles
for awider application of themodel. Firstly, there is no closed-form
solution available for the partial differential equation (PDE) of a
diffusion process with the necessary boundary conditions. The
available solutions (e.g., Feller, 1968) all require the evaluation
of infinite series. These series can be shown to converge quite
quickly (Blurton, Kesselmeier, & Gondan, 2012; Gondan, Blurton, &
Kesselmeier, 2014; Navarro & Fuss, 2009). However, when fitting
the model to data, the series has to be evaluated over and over
again, which may take a considerable amount of time. This is
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especially true if more general versions of the model are fitted
to data (see the next section). In that case, several numerical
integrations have to be carried out that are associated with
their own (possibly unknown) approximation errors. However,
for parameter estimation, it is useful to have an exact result to
avoid numerical problems during estimation (e.g., rough likelihood
surfaces).

Secondly, the available solutions only cover the standard
Wiener process with constant drift across trials. By analogy to the
signal detection model (Tanner & Swets, 1954) and based on com-
mon sense arguments (the ‘‘resonance’’ metaphor), Ratcliff (1978)
argued that the drift rate v shows inter-trial variability that can
be described by a normal distribution: v ∼ N


ν, η2


. For exam-

ple, one direct consequence of this assumption is that in a re-
sponse signal paradigm, perceptual sensitivity d′ asymptotes and
does not reach infinity with signal time t (Ratcliff, 1978, Eq. 10).
However, this extra variability comes at the cost of a missing an-
alytical form for the model predictions. Hence, model predictions
must be obtained by numerical evaluation instead (Ratcliff & Tuer-
linckx, 2002). Interestingly, the density function1 is known for the
case of normally distributed drift rates (e.g., Horrocks & Thomp-
son, 2004) and it has been used in the past for fitting the diffusion
model to response time data (Ratcliff & Tuerlinckx, 2002; Wiecki,
Sofer, & Frank, 2013). For the lower barrier, it is

g

t | ν, η2, a, w


=

1
t3

1 + η2 t


× exp


−ν2t − 2νaw + η2 (aw)2

2

1 + η2t

 

×

∞
j=0

(−1)j rj φ


rj
√
t


(1)

where rj = ja + aw for even j or rj = ja + a (1 − w) for odd
j, and φ (x) denotes the standard normal density function evalu-
ated at x, and 0 < w < 1 is the relative starting point of the
Wiener process between the two barriers. Without loss of gen-
erality the diffusion coefficient σ 2 has been omitted in (1), as
g ′

t | ν, η2, σ 2, a, w


= g


t | ν/σ , η2/σ 2, a/σ ,w


. The density

function is useful if maximum likelihood estimation is desired.
However, if parameter estimates are to be obtained from binned
data, for example by chi-square methods (e.g., Ratcliff & Smith,
2004) or by the quantile maximum likelihood method (Heathcote,
Brown, & Mewhort, 2002), one must rely on numerical integration
of the first-passage timedensity to obtain the distribution function.

Since its introduction additional parameters for inter-trial
variability have been added to the model (Ratcliff & Rouder, 1998;
Ratcliff & Tuerlinckx, 2002). Thus, the ‘‘full’’ Ratcliff diffusionmodel
fit now requires the numerical evaluation of three integrals (see
Tuerlinckx, 2004, Eq. 3). This can become time consuming as the
computational complexity raises exponentially (Tuerlinckx, 2004)
and all these integrals must be evaluated on infinite series.

Here, we present an analytical solution for the first-passage
time distribution of the Ratcliff (1978) model with drift variation.
The solution is of theoretical interest and especially for applica-
tions of themodel. For the application, it increases speed and estab-
lishes a pre-defined accuracy of the fitting procedure. It is readily

1 Note that the distribution (density) is technically not a probability distribution
(density) but a defective distribution (density) because it does not integrate to
unity. One obtains a proper distribution (density) by summing the distributions
(densities) from the upper and lower criteria or by normalizing through the
respective absorption probability.

available for use in existing software packages like DMAT (Vandek-
erckhove & Tuerlinckx, 2008). Researchers that have implemented
or seek to implement their own fitting routines will also benefit
from the solution as it guarantees a computationally efficient com-
putation with accuracy up to some pre-defined level.

2. The cumulative distribution function for the Ratcliff diffu-
sion model

Recently, Gondan and colleagues (2014) reported a solution of
the PDE for a Wiener process with constant drift between two
absorbing barriers that is using a representation stated in terms of
the Mills ratio (Hall, 1997). We would like to remind the reader of
some of the favorable properties of this representation. Firstly, it is
numerically very stable and no numerical problems arise during
the calculation of the infinite series. Secondly, and contrasting
its related representation (e.g., Blurton et al., 2012), it is defined
for all real drift rates and does not suffer from a singularity at
zero drift. Clearly, this is very important when integrating over
drift rates. Thirdly, it gives the distribution function and not the
survivor function so that the separate calculation of the overall
absorption probability at a specific barrier is not necessary. In
the most widely adapted representation of the first-passage time
cumulative distribution, the survivor function is used. In that case,
the series must be subtracted from the probability of terminating
at the associated barrier to obtain the cumulative distribution
(see Ratcliff, 1978, Eq. A12 and p. 105f, for the motivation of this
approach). Obtaining the cumulative directly avoids problems in
the derivation regarding this probability with drift variation over
trials (see Tuerlinckx, 2004). Apart from the latter issue, these
points also hold for the alternative solution that is available and
usually used in fitting the diffusionmodel (Ratcliff, 1978; Ratcliff &
Tuerlinckx, 2002). However, the analytic solution for this CDF with
inter-trial variability in drift rates is yet unknown.

Using the aforementioned representation (1), the cumulative
distribution function F (t) of the first-passage time of a Wiener
process with drift v between two absorbing barriers placed at 0
and a > 0 and starting at aw (0 < w < 1) to the lower boundary
can be expressed by the infinite series (Hall, 1997)

F (t | v, a, w) = exp


−vaw −
v2t
2
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j=0

(−1)j φ


rj
√
t
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M

rj − vt

√
t


+ M


rj + vt

√
t


(2)

with rj andφ (x) as defined above, andM (x) =
1−Φ(x)
φ(x) denoting the

inverse hazard function (the ‘‘Mills ratio’’) for the standard normal
distribution.

In order to obtain a solution for the more general process with
trial-to-trial variability in drift rate v, one must seek a solution of
the integral


ψ (x) · F (t | x, a, w) dx, that is, one must integrate

over the density ψ (x) of the assumed drift distribution and the
first-passage time distribution F (t). Because drift rates can take
any real value and due to the correspondence with the signal
detection model (Tanner & Swets, 1954), the normal distribution
is usually chosen as a possible distribution for the drift rates
(Ratcliff, 1978, Eqs. 8, A24, & A25). Thus, we replace ψ (x) by the
normal density φ


x | ν, η2


with mean ν and variance η2. Let

G

t | ν, η2, a, w


be the first-passage time distribution of such a

process,

G
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