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h i g h l i g h t s

• A fundamental problem of Bayesian inference is solvable in a number of contexts.
• Computability assumptions turn out crucially to simplify the learning problem.
• Exceptions can be learned from positive data, a long-standing puzzle in language acquisition.
• Data alone is often sufficient to learn an underlying model in perception.
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a b s t r a c t

Within psychology, neuroscience and artificial intelligence, there has been increasing interest in the
proposal that the brain builds probabilistic models of sensory and linguistic input: that is, to infer a
probabilistic model from a sample. The practical problems of such inference are substantial: the brain
has limited data and restricted computational resources. But there is a more fundamental question: is
the problem of inferring a probabilistic model from a sample possible even in principle? We explore this
question and find some surprisingly positive and general results. First, for a broad class of probability
distributions characterized by computability restrictions, we specify a learning algorithm that will almost
surely identify a probability distribution in the limit given a finite i.i.d. sample of sufficient but unknown
length. This is similarly shown to hold for sequences generated by a broad class of Markov chains, subject
to computability assumptions. The technical tool is the strong law of large numbers. Second, for a large
class of dependent sequences, we specify an algorithmwhich identifies in the limit a computablemeasure
for which the sequence is typical, in the sense of Martin-Löf (there may be more than one such measure).
The technical tool is the theory of Kolmogorov complexity. We analyze the associated predictions in
both cases. We also briefly consider special cases, including language learning, and wider theoretical
implications for psychology.

© 2016 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bayesianmodels in psychology and neuroscience postulate that
the brain learns a generative probabilistic model of a set of percep-
tual or linguistic data (Chater, Tenenbaum, & Yuille, 2006; Oaks-
ford & Chater, 2007; Pouget, Beck, Ma, & Latham, 2013; Tenen-
baum, Kemp, Griffiths, & Goodman, 2011). Learning is therefore
often viewed as an inverse problem. Some aspect of the world
is presumed to contain a probabilistic model, from which data is
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sampled; the brain receives a sample of such data, e.g., at its sen-
sory surfaces, and has the task of inferring the probabilistic model.
That is, the brain has to infer an underlying probability distribution,
from a sample from that distribution.

This theoretical viewpoint is implicit in awide range of Bayesian
models in cognitive science, which capture experimental data
across many domains, from perception, to categorization, lan-
guage,motor control, and reasoning (e.g., Chater&Oaksford, 2008).
It is, moreover, embodied in awide range of computationalmodels
of unsupervised learning in machine learning, computational lin-
guistics, computer vision (e.g., Ackley, Hinton, & Sejnowski, 1985;
Manning & Klein, 2003; Yuille & Kersten, 2006). Finally, the view
that the brain recovers probabilistic models from sensory data is
both theoretically prevalent and has received considerable empir-
ical support in neuroscience (Knill & Pouget, 2004).
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The idea that the brain may be able to recover a probabilistic
process froma sample of data from that process is an attractive one.
For example, a recovered probabilistic model might potentially
be used to explain past input or to predict new input. Moreover,
sampling new data from the recovered probabilistic model could
be used in the generation of new data from that probabilistic
process, for creating mental images (Shepard, 1984) or producing
language (Chater & Vitányi, 2007). Thus, from a Bayesian
standpoint, one should expect that the ability to perceive should
go alongside the ability to create mental images; and the ability
to understand language should go alongside the ability to produce
language. Thus, the Bayesian approach is part of the broader
psychological tradition of analysis-by-synthesis, for which there is
considerable behavioral and neuroscientific evidence in perceptual
and linguistic domains (Pickering & Garrod, 2013; Yuille & Kersten,
2006).

Yet, despite its many attractions, the proposal that the brain
recovers probabilistic processes from samples of data faces both
practical and theoretical challenges. The practical challenges in-
clude the fact that the available data may be limited (e.g., children
learn the probabilistic model of highly complex language using
only millions of words). Moreover, the brain faces severe compu-
tational constraints: even the limited amount of data encountered
will be encoded imperfectly and may rapidly be lost (Christiansen
& Chater, 2016; Haber, 1983). The brain has limited processing re-
sources to search and test the vast space of possible probabilistic
models that might generate the data available.

In this paper we explore the conditions under which exactly
inferring a probabilistic process from a stream of data is possible
even in principle, with no restrictions on computational resources
like time or storage or availability of data. If it turns out that
there is no algorithm that can learn a probabilistic structure from
sensory or linguistic experience when no computational or data
restrictions are imposed, then this negative result will still hold
when more realistic settings are examined.

Our analysis differs from previous approaches to these issues
by assuming that the probabilistic process to be inferred is, in a
way thatwill bemade precise later, computable. Roughly speaking,
the assumption is that the data to be analyzed is generated by
a process that can be modeled by a computer (e.g., a Turing
machine or a conventional digital computer) combined with a
source of randomness (for example, a fair coin that can generate
a limitless stream of random 0s and 1s that could be fed into
the computer). There are three reasons to suppose that this focus
on computable processes is interesting and not overly restrictive.
First, some influential theorists have argued that all physical
processes are computable in this, or stricter, senses (e.g., Deutsch,
1985). Second, most cognitive scientists assume that the brain is
restricted to computable processes, and hence can only represent
computable processes (e.g., Rescorla, 2015). According to this
assumption, if it turns out that some aspects of the physical
world are uncomputable, these will trivially be unlearnable simply
because they cannot be represented; and, conversely, all aspects of
learning of relevance to psychology, i.e., all aspects of the world
that the brain can successfully learn, will be within the scope of
our analysis. Third, all existing models of learning in psychology,
statistics and machine learning are computable (and, indeed, are
actually implemented on digital computers) and fall within the
scope of the present results.

1.1. Background: pessimism about learnability

Within philosophy of science, cognitive science, and formal
learning theory, a variety of considerations appear to suggest that
negative results are likely. For example, in the philosophy of sci-
ence it is often observed that theory is underdetermined by data

(Duhem, 1914–1954; Quine, 1951): that is, an infinite number of
theories is compatible with any finite amount of data, however
large. After all, these theories can all agree on any finite data set,
but diverge concerning any of the infinitely large set of possible
data that has yet to be encountered. This might appear to rule out
identifying the correct theory—and hence, a fortiori identify a cor-
rect probability distribution.

Cognitive science inherits such considerations, to the extent
that the learning problems faced by the brain are analogous to
those of inferring scientific theories (e.g., Gopnik, Meltzoff, & Kuhl,
1999). But cognitive scientists have also amplified these concerns,
particularly in the context of language acquisition. Consider,
for example, the problem of acquiring language from positive
evidence alone, i.e., from hearing sentences of the language, but
with no feedback concerningwhether the learner’s ownutterances
are grammatical or not (so-called negative evidence). It is often
assumed that this is, to a good approximation, the situation
faced by the child. This is because some and perhaps all children
receive little useful feedback on their own utterances and ignore
such feedback even when it is given (Bowerman, 1988). Yet,
even without negative evidence, children nonetheless learn their
native language successfully. For example, an important textbook
on language acquisition (Crain & Lillo-Martin, 1999) repeatedly
emphasizes that the child cannot learn restrictions on grammatical
rules from experience—and that these must therefore somehow
arise from innate constraints. For example, the English sentences
which team do you want to beat, which team do you wanna beat,
and which team do you want to win, would seem naturally to
imply that *which team do you wanna win is also a grammatical
sentence. As indicated by the asterisk, however, this sentence is
typically rejected as ungrammatical by native speakers. According
to classical linguistic theory (e.g., Chomsky, 1982), the contraction
towanna is not possible because it is blocked by a ‘‘gap’’ indicating
amissing subject—a constraint that has sometimes been presumed
to follow from an innate universal grammar (Chomsky, 1980).

The problem with learning purely from positive evidence is
that an overgeneral hypothesis, which does not include such
restrictions, will be consistentwith new data; given that languages
are shot through with exceptions and restrictions of all kinds, this
appears to provide a powerful motivation for linguistic nativism
(Chomsky, 1980). But this line of argument cannot be quite right,
because many exceptions are entirely capricious and could not
possibly follow from innate linguistic principles. For example,
the grammatical acceptability of I like singing, I like to sing, and
I enjoy singing would seem to imply, wrongly, the acceptability
of *I enjoy to sing. But the difference between the distributional
behavior of the verbs like and enjoy cannot stem from any innate
grammatical principles. The fact that children are able to learn
restrictions of this type, and the fact that they are so ubiquitous
throughout language, has even led some scholars to speak of the
logical problem of language acquisition (Baker & McCarthy, 1981;
Hornstein & Lightfoot, 1981).

Similarly, in learning the meaning of words, it is not clear how,
without negative evidence, the child can successfully retreat for
overgeneralization. If the child initially proposes that, for exam-
ple, dog refers to any animal, or that mummy refers to any adult
female, then further examples will not falsify this conjecture. In
word learning and categorization, and in language acquisition, re-
searchers have suggested that one potential justification for over-
turning an overgeneral hypothesis is that absence-of-evidence can
sometimes be evidence-of-absence (Hahn & Oaksford, 2008; Hsu,
Horng, Griffiths, & Chater, 2016). That is, a child might take the ab-
sence of people using the word dog when referring to cats or mice;
and the absence of Mummy being used to refer to other female
friends or family members might lead to the child to be in doubt
concerning their liberal use of these terms. But, of course, this line
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