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a b s t r a c t

A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson’s disease
(PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes
involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality
genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-
exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls.
No statistically significant enrichment of rare variants across all genes, per gene, or for any individual
variant was detected in either cohort. There were nonsignificant trends toward different carrier fre-
quencies between PD cases and controls, under different inheritance models, in the following CMM risk
genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a
pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent
cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and
has a role in the production of dopamine. These results suggest a possible role for another gene in the
dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies
in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease
pathogenesis.
� 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Parkinson’s disease (PD) is characterized by the progressive loss
of postmitotic dopaminergic neurons, whereas cancer results from
uncontrolled cellular proliferation. Although PD and cancer are
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distinct diseases, a relationship between PD and cancer is well
established. Epidemiological studies have shown that although
most cancers are less frequent in PD compared with the general
population (Bajaj et al., 2010; Becker et al., 2010; Catalá-López et al.,
2014; D’Amelio et al., 2004; Elbaz et al., 2002, 2005; Gao et al.,
2009a; Kareus et al., 2012; Olsen et al., 2005, 2006; Ong et al.,
2014; Wirdefeldt et al., 2014), cutaneous malignant melanoma
(CMM) is found at an increased incidence in PD (Bajaj et al., 2010;
Becker et al., 2010; Catalá-López et al., 2014; Kareus et al., 2012;
Ong et al., 2014; Wirdefeldt et al., 2014). This well-documented
association between CMM and PD is unexplained.

A genetic link between PD and CMM is supported by the
demonstration of significant reciprocal risks of PD and CMM in
cases and their relatives (Gao et al., 2009a, 2009b; Kareus et al.,
2012). Although some support for a somatic genetic link between
the 2 pathologies is provided by the role of Mendelian PD genes in
CMM biology (Cesari et al., 2003; Kim et al., 2005; Liu et al., 2011;
Matsuo and Kamitani, 2010; Millikin et al., 1991), there is
currently no direct evidence for shared genetic susceptibility be-
tween PD and CMM.

Some studies have assessed the reciprocal role of common
(minor allele frequency [MAF] > 1%) genetic variation in CMM and
PD. Recently, it has been suggested that the CMM-associated MC1R
variants p.R151C and p.R160W increase PD risk but their role still
remains unclear (Dong et al., 2014; Gao et al., 2009b; Lubbe et al.,
2016; Tell-Marti et al., 2015). Previous studies using genome-wide
association study variants associated with PD or CMM have failed
to show any genetic overlap (Dong et al., 2014; Meng et al., 2012).
More recently, rare de novo variants in the CMM risk gene PTEN
have been implicated in PD (Kun-Rodrigues et al., 2015), but the
role of rare coding variants underlying an association between PD
and CMM has not yet been fully evaluated. Because the role of
common genetic variation (variants with MAF >1%) has already
been substantially addressed, we focused our investigation into the
proposed shared genetic background between these diseases on
rare variants (MAF <1%) in known CMM genes in 2 large inde-
pendent PD case-control data sets as part of the International
Parkinson’s Disease Genomics Consortium.

2. Methods and materials

2.1. Genetic analysis

Using a systematic literature search, we identified susceptibility
genes for CMM (Supplementary Table 1). These included (1)
germline high-risk genes associated with familial CMM (e.g.,
CDKN2A, CDK4); (2) germline common moderate-risk genes (e.g.,
MC1R); (3) genes commonly somatically mutated (e.g., BRAF); and
(4) recently identified genes found to harbor rare somatic muta-
tions ascribed to CMM (e.g., TRRAP, DCC). Genes were selected based
on defined roles in inherited high-penetrance autosomal dominant
disease (n ¼ 2); an excess of somatic mutations (n ¼ 20); an excess
of common low-penetrance risk variants (n ¼ 3); or combinations
of these (n ¼ 4). All rare (MAF <1%) variants across these genes
were assessed for enrichment in PD cases compared with unaf-
fected controls.

We first assessed high-quality rare variant genotype data
derived from the NeuroX chip on 6875 PD cases and 6065 controls
(dbGaP Study Accession: phs000918.v1.p1). Briefly, the NeuroX
chip has approximately 240,000 preselected variants based on
standard Illumina exome content and over 24,000 custom content
neurologic disease focused variants (Nalls et al., 2015).

We next assessed whole-exome sequencing data on 1255 PD
cases and 473 controls from the International Parkinson’s Disease
Genomics Consortium. Briefly, sample libraries from cases and

controls were prepared using either Roche Nimblegen (cases, n ¼
334; controls, n¼ 40) or Illumina (cases, n¼ 921; controls, n¼ 433)
capture kits with paired-end sequencing performed on the Illumina
HiSeq2000. Reads were aligned using Burrows-Wheeler Aligner
(Li and Durbin, 2009) against the University of California Santa Cruz
(UCSC) hg19 reference genome. Variant calling and quality-based
filtering were done using Genome Analysis Tool Kit (GATK)
(McKenna et al., 2010). ANNOVAR (Wang et al., 2010) was used to
annotate variants with predicted impact of variants from the
following in silico tools: SIFT (Ng and Henikoff, 2001), PhyloP
(Pollard et al., 2010), PolyPhen-2 (Adzhubei et al., 2010), LRT (Chun
and Fay, 2009), MutationTaster (Schwarz et al., 2010), and GERPþþ
(Davydov et al., 2010).

Of the 29 identified CMM genes, only 24 were represented on
the NeuroX panel (Supplementary Table 1). Based on the annotated
MAF data from 1000 Genomes Project (http://www.1000genomes.
org/) and NHLBI GO Exome Sequencing Project (https://evs.gs.
washington.edu/EVS/), all rare variants (MAF < 1%) were extrac-
ted and assessed in PD cases and controls. We defined the potential
deleterious impact of variants using previously defined methods
(Fu et al., 2013; Tennessen et al., 2012) with variants classified as
damaging if �4 of the 6 in silico tools used predicted the change
deleterious. Variants and samples with >5% missing calls were
excluded during QC.

All exome generated FastQs were run through the same pipeline
and merged to generate high-quality genotype data. Damaging
variants were defined as stated above. The GATK recommended
filtering of variants, including the removal of variants with low
coverage (read depth<5), was implemented over and above the QC
stated above. Post QC, 28 of the 29 selected CMM genes were
covered by one or both captures methods (Supplementary Table 1),
and no difference between capture methods was observed with
majority of all exons represented and included in the analyses
(Supplementary Table 2).

Candidate variants were also assessed in high-quality exome
sequencing data generated from a CMM case-control cohort (CMM,
n ¼ 1298; Controls, n ¼ 684) to investigate any reciprocal risks for
CMM.

2.2. Statistical analysis

SNP-Set (Sequence) Kernel Association Test (SKAT) (Wu et al.,
2011) was used to test for association between the rare variants
in genes and PD (gene- and gene set-based), adjusting for covariates
including gender, coverage metrics and principal components
(1e4). Dominant and recessive models of inheritance for each CMM
gene were modeled and assessed using STATA (version 10; STATA,
State College, TX, USA) via logistic regression, adjusting for cova-
riates. For variants common to both cohorts, meta-analyses were
conducted using standard methods modeling fixed effects (Petitti,
1994). Cochran’s Q-statistic was calculated to test for heterogene-
ity (Phet) (Petitti, 1994), and the I2 statistic (Higgins and Thompson,
2002) was generated to quantify the proportion of the total varia-
tion caused by heterogeneity. Bonferroni’s correction was applied,
where applicable, to account for multiple testing.

3. Results

3.1. Rare variant screening and burden analysis

The NeuroX data contained 237 variants with �1 nonreference
allele after QC, including 215 (90.7%) nonsynonymous single
nucleotide polymorphisms (nsSNPs), and 17 (7.2%) loss of function
(LOF) variants (stop gains or losses, splice, frame- or nonframeshift
indels). About 554 variants with �1 nonreference allele were
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