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A B S T R A C T

Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) are important diffusion MRI techniques for
detecting microstructure abnormities in diseases such as Alzheimer's. The advantages of DKI over DTI have been
reported generally; however, the indistinct relationship between diffusivity and kurtosis has not been clearly
revealed in clinical settings. In this study, we hypothesize that the combination of diffusivity and kurtosis in DKI
improves the capacity of DKI to detect Alzheimer's disease compared with diffusivity or kurtosis alone.
Specifically, a support vector machine-based approach was applied to combine diffusivity and kurtosis and to
compare different indices datasets. Strict assessments were conducted to ensure the reliability of all classifiers.
Then, data from the optimized classifiers were used to detect abnormalities. With the combination, high
accuracy performances of 96.23% were obtained in 53 subjects, including 27 Alzheimer's patients. More highly
scored abnormal regions were selected by the combination than alone. The results revealed that more precise
diffusivity and complementary kurtosis mainly contributed to the high performance of the combination in DKI.
This study provides further understanding of DKI and the relationship between diffusivity and kurtosis in
pathologic white matter alterations in Alzheimer's disease.

1. Introduction

Structural changes in brains affected by Alzheimer's disease (AD)
are important contributors for identifying cognitive decline and patho-
logical developments, including the abnormal diffusion properties of
tissues caused by axonal myelin sheath degradation, changed mem-
brane permeability and cerebral atrophy (Chopra et al., 2011; Hahn
et al., 2013). Diffusion tensor imaging (DTI) is a conventional technique
to measure the microstructure of brain tissue and has been widely used
in the clinic. However, as only one principle orientation is confirmed in
every voxel because of DTI's Gaussian diffusion assumption, diffusion
kurtosis imaging (DKI) (Hui et al., 2008; Jensen et al., 2005) has been
put forward and developed as one of the new diffusion MRI techniques
beyond DTI. DKI is also a comprehensible extension of DTI when
kurtosis measurements are additionally introduced as non-Gaussian
quantifications for the deviations from Gaussian diffusion. DKI is
proposed as being highly sensitive to micro-changes in tissues and
has the potential for early diagnosis of diseases such as Alzheimer's
(Cheung et al., 2009; Hui et al., 2008; Struyfs et al., 2015).

DKI is increasing in popularity, and clinical research using DKI has
been conducted for conditions such as AD (Gong et al., 2014; Yuan
et al., 2016), multiple sclerosis (Yoshida et al., 2013), stroke (Weber
et al., 2015), prostate cancer (Roethke et al., 2015), Parkinson's disease
(Giannelli et al., 2012) and traumatic brain injury (Zhuo et al., 2012).
Those studies generally support the hypothesis that DKI has greater
potential in abnormality detection than DTI with non-Gaussian mea-
surement (Lazar et al., 2008; Lu et al., 2006; Wu and Cheung, 2010).
DKI provides kurtosis tensor and diffusion tensor simultaneously, and
the kurtosis tensor is assumed to supplement the diffusion tensor in
describing the microstructure (Roethke et al., 2015; Weber et al., 2015;
Yoshida et al., 2013; Yuan et al., 2016). Nonetheless, the advantages of
DKI, including measuring kurtosis and diffusivity, have not been
directly clarified. Most research in DKI has performed analyses or
comparisons of the diffusivity and kurtosis indices separately. Although
a complementary relationship between diffusivity and kurtosis infor-
mation has been proposed, no direct evidence has demonstrated it
clearly and properly. Considering the complementarity, we think that
the combination or fusion of these two types of measurements would
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markedly promote and uncover the potential advantages of DKI from a
novel viewpoint.

Machine Learning (ML)-based approaches have been widely used in
the detection of AD based on neuroimaging data. ML can capture and
uncover the multivariate relationships or patterns among high-dimen-
sional features. ML is also a powerful tool for computational automatic
diagnosis (CAD) that can improve prediction accuracy by complement-
ing the neuropsychological assessments performed by expert clinicians
(Alves et al., 2015; Blockx et al., 2012; Nakaaki et al., 2013).
Furthermore, ML is particularly sensitive to the distribution of dis-
ease-specific changes hidden within image data, which are difficult to
identify using conventional single index statistics (Blockx et al., 2012).
Thus, an ML-based approach can be used to combine diffusivity and
kurtosis in pathologic detection. Additionally, to our knowledge, there
is no DKI research underway using an ML-based approach in the
diagnosis of any nervous system disease.

The following hypothesis is addressed in this paper: the fusion or
combination of diffusivity and kurtosis information in DKI improves the
sensitivity and specificity of detecting AD compared with diffusivity or
kurtosis alone. There were 53 subjects (27 Alzheimer's patients and 26
normal healthy controls) and 23 manually defined regions of interest
(ROIs) involved in this study. To investigate how multiple indices of
diffusivity or kurtosis can be used in conjunction, a Support Vector
Machine (SVM)-based ML approach was adopted for the classification
of control and AD subjects. Several aspects of the classifier were
considered to access reliability and pathological relevance, including
classification accuracies, permutation tests, receiver operator charac-
teristic curves and regression analyses. We first compared the perfor-
mance of diffusivity indices derived from DTI and DKI. Second, we
analyzed the difference in pathological detection between diffusivity
and kurtosis alone. Third, we expected that the combination of
diffusivity and kurtosis with an SVM-based approach would reach a
dramatic performance in pathological detection.

2. Materials and methods

2.1. Participants

A total of 56 participants, 29 patients with Alzheimer's disease (AD)
and 27 age-matched normal controls (NCs), were recruited. The
approval to carry out the study was obtained from the ethics committee
of Tianjin First Central Hospital, China. All participants provided
written informed consent in accordance with the Human Research
Committee guidelines, and all AD patients were informed and provided
their consent with the help of their families or guardians. The
examination of every participant included an informative interview,
medical history, structural MRI and neuropsychological assessment test,
consisting of the cognitive behavioral assessment scale of the Mini-
Mental State Examination (MMSE, Chinese version, education cor-
rected), Montreal Cognitive (MOCA) and Clinical Dementia Rating
(CDR). The cognitive profiles of the AD patients were assessed using a
battery of validated neuropsychological tests. The inclusion criteria for
the AD group were as follows: (i) the National Institute of Neurological
and Communicative Disorders and Stroke-Alzheimer's Disease and
Related Disorders Association criteria for AD; and (ii) cognitive
assessment scales with MMSE≤23, MOCA<26, 1≤CDR≤2. The
inclusion criteria for the normal control group were as follows: (i) no
evidence of dementia or MCI; and (ii) MMSE ≥26, MOCA≥26,
CDR=0. All the participants were additionally examined for the
absence of vascular and mixed dementia, depression and anxiety using
the Hachinski Ischemic Score (HIS)< 4, Hamilton Depression
Scale< 7 and Hamilton Anxiety Scale< 6. Two AD patients were
excluded because of incompatibility with the inclusion criteria. One of
the normal controls was removed because of subject head motion.
Finally, 27 AD and 26 normal control cases were included. The
demographic and neuropsychological information of the AD and NC

groups in this paper is shown in Table 1.

2.2. Data acquisition

A 3.0 T MRI scanner (Siemens, Trio) was used for diffusion weighted
imaging (DWI) acquisition with pulsed gradient spin-echo planar
imaging sequences with TR/TE=10800 ms/103 ms. Images were ac-
quired for a 128×128 matrix per slice with a resolution of
1.8×1.8×1.8 mm3. Seventy-three transverse slices with no gaps were
acquired for complete brain coverage. Diffusion weighted gradients
were applied in 30 non-collinear directions for each of the two diffusion
weighted b-values 1000 s/mm2 and 2000 s/mm2. The b =0 s/mm2

image without diffusion weighting was also acquired. For co-registra-
tion and structure information, 3D T1-weighted anatomical images
were obtained using a magnetization-prepared rapid-acquisition gradi-
ent echo (MP-RAGE) sequence with the parameters: TR/TE=1900 ms/
2.5 ms, TI=100 ms, flip angle=9°, FOV=256×256 mm2, ma-
trix=256×256 mm2, ensuring=1×1×1 mm3.

2.3. Diffusivity and kurtosis mapping

For strict control of the image quality, several examinations were
conducted. First, a visual quality assurance (QA) check (2 years of
experience) on all data was conducted to check for gross image
artifacts, such as "Venetian blinds" and severe slice dropouts covering
more than half of a slice. After the visual check, an automated QA was
also performed by running a slice-wise correlation check within the
software DTIPrep (Oguz et al., 2014). This test detects intensity
abnormalities and/or motion between different gradients and inter-
leaved parts within one gradient image volume (Oguz et al., 2014). One
normal control sample was rejected in this automated QA procedure.
Subsequently, eddy current and motion correction were performed
using FSL-eddy (FMRIB Software Library v5.0, Oxford, UK, http://
www.fmrib.ox.ac.uk/fsl/) (Andersson and Sotiropoulos, 2015;
Jenkinson et al., 2012). The quality of the eddy-current and motion-
corrected images was considered satisfactory if the residual motion was
below 2 mm for translation and 0.5 degrees for rotation between
consecutive DWIs (Liu et al., 2010). In the eddy procedure of FSL, the
b-matrix was reoriented after motion correction to match the affine
registration for more accurate tensor estimations (Leemans and Jones,
2009). Then, DKE (diffusion kurtosis estimation, http://
academicdepartments.musc.edu/cbi/dki/dke.html) software was used
for DKI indices calculation. As reported in Van Hecke et al. (2010), the
Gaussian kernel-smoothing filter can maintain specificity. All images
were smoothed with an FWHM of 2.25 mm (1.25 times the voxel size).

According to previous methods (Cheung et al., 2009; Hui et al.,
2008), DKI-derived kurtosis parameters (mean kurtosis, MK; axial
kurtosis, AK; and radial kurtosis, RK) and diffusion parameters (mean
diffusivity, MD; axial diffusivity, AxD; radial diffusivity, RD; and
fractional anisotropy, FA) (Fig. 1) were calculated (Cheung et al.,
2009; Hui et al., 2008) with the 61 volumes in the DKE software
(diffusion kurtosis estimation, http://academicdepartments.musc.edu/
cbi/dki/dke.html) using the CLLS-QP (constrained linear least squares-
convex quadratic programming) algorithm (Lazar et al., 2008). Addi-

Table 1
Participant characteristics.

AD (n=27) NC (n=26) p-value

Gender (m/f) 13/14 11/15 0.427a

Age (year) 66.5± 7.7 66.0± 8.1 0.843b

Education (year) 10.9± 2.6 10.7± 2.4 0.821b

MMSE 19.5± 2.8 28.5± 0.9 0.000b

CDR 1.4± 0.4 0 –

a Chi-squared test
b Two-sample T-test
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