
Sustainable Computing: Informatics and Systems 4 (2014) 44–51

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

jou rn al hom epage: www.elsev ier .com/ locate /suscom

Optimal energy consumption and throughput for workflow
applications on distributed architectures

Abdallah Ben Othman, Jean-Marc Nicod ∗, Laurent Philippe, Veronika Rehn-Sonigo
FEMTO-ST Institute, CNRS/UFC/ENSMM/UTBM, Besanç on, France

a r t i c l e i n f o

Article history:
Received 31 August 2012
Received in revised form
20 December 2013
Accepted 14 January 2014

Keywords:
Scheduling
Workflow applications
Energy minimization
Fault tolerance
Throughput maximization
Polynomial complexity

a b s t r a c t

In this article we study both the throughput and the energy optimization problems for a distributed
system subject to failures that executes a workflow at different speed levels. The application is modeled
as a directed acyclic graph composed of typed tasks linked by dependency constraints. A continuous
flow, or a great number of application instances, has to be processed. Optimizing the collaborative system
performance implies to increase the throughput – the number of application instances processed by time
unit – or to decrease the period – the time needed to output one instance of the system. The system is
designed as a collaborative platform of distributed machines. Each machine collaborates with others by
performing all the instances of at least one task of the DAG. The problem we tackle is to optimize the
configuration of the platform. In this paper we propose two polynomial algorithms that optimize the two
objectives of period (i.e., throughput) minimization and energy minimization. We prove that the proposed
algorithms give optimal results. Our optimization approach is hierarchic in that we either minimize the
energy consumption for the optimal period or minimize the period for the optimal energy consumption.
Moreover a minor modification of our algorithms allows to compute the Pareto front between the two
optimal solutions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we focus on workflow applications described as
directed acyclic graphs (DAGs). An application is mapped on a set
of distributed machines and a flow of instances has to be processed.
This is the case of systems that continuously input raw data to
which several processing stages or tasks must be applied to obtain a
final result [1]. Another example are configurable production sys-
tems [2,3]. The system is designed as a collaborative platform of
distributed machines. Each machine collaborates with others by
performing all the instances of at least one task of the DAG. Illustra-
tions of these contexts are a flow of images generated by a camera
that must be processed in several stages or a production flow
with several succeeding tasks. The considered tasks are of differ-
ent types that represent the different processing procedures (e.g.,
filters, analysis, assembly and so on). When the data processing
in the application is substantial, several computers or production
cells must be used to be able to process the entire input flow and the
problem of scheduling the tasks on the resources becomes complex
due to the heterogeneity of the processing times on the resources
[4]. The complexity of the problem may be lowered by consider-
ing that each machine only executes one task type thus avoiding

∗ Corresponding author. Tel.: +33 381 40 28 11.
E-mail address: Jean-Marc.Nicod@femto-st.fr (J.-M. Nicod).

costly context changes and cases where a machine executes parts
of several tasks [5]. Then the initial problem becomes a mapping
problem where task types must be mapped onto machines and the
objective function is to find the best possible throughput, i.e., to
maximize the number of instances processed per time unit [6]. Note
that the objective function used in this paper is the period mini-
mization – the time between two consecutive outputs. The period
is the inverse of the throughput, which amounts to the same but is
more widely used in workflow system optimization.

This paper addresses the problem of using a dedicated system
that continuously executes the same DAG of tasks onto differ-
ent instances with transient failures that sometimes destroy one
instance. In this context the objective is to provide the lowest
period for the system output. Application flow execution as image
processing may be very energy consuming for large images. In the
workflow all execution steps however do not have the same execu-
tion cost. Lowering the execution speed of the less loaded resources
can substantially reduce the global energy consumption. We thus
propose two polynomial algorithms based on a greedy approach
that either reach the objective of period minimization for a fixed
energy consumption or reach the objective of energy minimization
for a fixed period. Furthermore we prove the optimality of both
the two approaches. For cases where one of the constraints is not
compliant with the optimal solution, we propose an adaptation of
our algorithms that provides the Pareto front which links the two

2210-5379/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.suscom.2014.01.001

dx.doi.org/10.1016/j.suscom.2014.01.001
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2014.01.001&domain=pdf
mailto:Jean-Marc.Nicod@femto-st.fr
dx.doi.org/10.1016/j.suscom.2014.01.001

A.B. Othman et al. / Sustainable Computing: Informatics and Systems 4 (2014) 44–51 45

optimal solutions – the lowest energy consumption with an optimal
period and the lowest period with the optimal energy consumption.

The paper is organized as follows: Section 2 discusses related
work. In Section 3 we give a formal definition of the problem. In
Section 4 we present and prove several lemmas that are used in
Section 5 to define the proposed algorithms. Then, in Section 6, we
present the result of the algorithm implementation, in the shape of
a Pareto front, for cases where the constraints do not allow to reach
the optimal solutions. We conclude the article in Section 7.

2. Related work

Nowadays more and more attention is paid to energy consump-
tion for financial and environmental reasons. This tendency has also
reached the distributed computing domain [7–9]. In the case of flow
applications where the global throughput is directed by the lower
throughput of the graph, it is not always necessary that all machines
run at maximum speed [10]. Several papers define an energy model
based on power consumption modes where the processing capabil-
ities depend on the supplied voltage [11,12]. Then voltage scaling
is used to slow down some of the machines – and as a consequence
energy spared – without affecting the global throughput [13]. It is
thus worth to find the lowest possible speed for each machine for a
given throughput or, on the opposite, the best reachable through-
put for a given energy consumption.

On the other hand in distributed environments such as GRIDs or
micro-factories, the risk of task failures cannot be ignored, in par-
ticular for long running and communication intensive applications
like flow applications. The failures may append for numerous rea-
sons such as network or computing errors, network contention,
task complexity and so on. Numerous works on reliability and
energy focus on the problem of Dynamic Voltage and Frequency
Scaling (DVFS) which leads to more errors when the frequency
is scaled down [14]. This assumption however only lays on the
assumption that with low voltage the processor becomes more
likely to be pone to errors. Defining a global error model for an entire
distributed system however is not so simple as these systems are
composed of so many elements, each with their own failure model.
For instance, [15] uses a model where the reliability of the proces-
sor is directly related to the number and span of speed changes.
Increasing the speed of computations or/and the processing load
can also lead to less reliable systems as it is shown in real HPC in-
production systems [16], or to DRAM errors [17]. [18], analyzing a
large database of failure in PC systems, suggests that “one can min-
imize the likelihood of failure over a given time period by operating
at the slowest CPU speed sufficient to achieve desired performance”.
Based on this observation, we assume in this paper that optimizing
the energy consumption of the system by decreasing its speed leads
to decrease the fault rate in addition to period minimization. In this
context we propose two algorithms that minimize either the energy
consumption for an optimal period or find the lowest period for a
minimal energy consumption. Note that the antagonism between
reliability and machine speed induces the complexity of the prob-
lem and, in particular, the properties set in Section 4.

3. Framework

In this section we formally define the application, platform and
energy models and our optimization objective.

3.1. Application model

We consider a workflow application that is running during infi-
nite or long time. The application is modeled as a directed acyclic
graph (DAG) G(T, D), with T = {T1, . . ., Tn} the tasks of the application

Fig. 1. Illustrating task graph.

and D ⊂ T × T the dependencies between the tasks (see Fig. 1). Data
sets enter the graph at the source task and traverse the graph from
one task to another before producing a final result at the sink task.
A weight wi is associated to each task Ti that corresponds to the
amount of work to be done to perform the task.

3.2. Platform and execution model

The platform is modeled as a set M = {M1, . . ., Mp} of p machines
fully interconnected. Each machine has input and output com-
munication buffers to store temporary data. We assume that the
communication times are shorter than the computation times so
that, thanks to the data buffering, the former are covered by com-
putations and thus can be neglected.

The tasks are statically allocated to machines according to an
allocation function a such that a(i) = u, i.e., all data instances that
enter task Ti are performed by machine Mu. Note that in this work
we assume that the mapping is already defined thanks to map-
ping algorithms as defined in [6] and we concentrate on period and
energy optimization of a given mapping.

A machine Mu runs at different speed levels lu (lu ∈ {0, 1, 2, . . .,
max(lu)}) with an associated slow down factor ˛lu

u ∈ [1, +∞). Note
that Mu runs at its highest speed, noted su, for level lu = 0. The sys-
tem configuration L is given by vector L = (l1, l2, . . ., lu, . . ., lp) that
describes the speed level of each machine.

Tasks are subject to transient failures. In case of failure, the cur-
rent data is lost and the task starts to process the next data. The
failure rate is defined for each task as the percentage of failures.
For a task Ti, allocated to machine Mu, we assume that the failure
rate f lu

i
depends on the task and on the machine speed level lu.

We also assume that the failure rate increases with the machine
speed: f lu

i
< f

l′u
i

with lu > l′u. It comes that if machine Mu performs
xlu

i
input data sets with task Ti, it outputs (1 − f lu

i
)xlu

i
data sets due

to failures. Considering L, the configuration of the platform, it is
possible to compute xlu

i
backwards for each data output of the appli-

cation. If task Ti has only one outgoing edge (Ti, Tj) within the DAG,
xlu

i
= xlu

j
/(1 − f lu

i
) (see Fig. 2 for an example). If the task Ti has several

outgoing edges (Ti, Tj) within the DAG, xlu
i

=∑(Ti,Tj)∈Dxlu
j

/(1 − f lu
i

).

Thus xlu
i

is the average number of data sets that machine Mu has to
perform with task Ti so as to output at least one result data set out
of the system.

3.3. Example of the platform and execution model

To clarify the above stated platform and execution model, we
consider the application given in Fig. 2. To keep the example simple,
we suppose that task Ti is mapped onto machine Mu with i = u and
that each machine runs at is lowest speed level. Hence task T1 is
mapped onto machine M1 which is running at a level l1. The failure

Fig. 2. Example for the backward computation of the necessary amount of data sets
for each task in a linear application, taking into account the failure rates.

Download English Version:

https://daneshyari.com/en/article/493650

Download Persian Version:

https://daneshyari.com/article/493650

Daneshyari.com

https://daneshyari.com/en/article/493650
https://daneshyari.com/article/493650
https://daneshyari.com

