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a b s t r a c t

In this paper, we propose a genetic algorithm for unconstrained multi-objective optimization. Multi-
objective genetic algorithm (MOGA) is a direct method for multi-objective optimization problems.
Compared to the traditional multi-objective optimization method whose aim is to find a single Pareto
solution, MOGA tends to find a representation of the whole Pareto frontier. During the process of solving
multi-objective optimization problems using genetic algorithm, one needs to synthetically consider the
fitness, diversity and elitism of solutions. In this paper, more specifically, the optimal sequence method is
altered to evaluate the fitness; cell-based density and Pareto-based ranking are combined to achieve
diversity; and the elitism of solutions is maintained by greedy selection. To compare the proposed
method with others, a numerical performance evaluation system is developed. We test the proposed
method by some well known multi-objective benchmarks and compare its results with other MOGASs';
the result show that the proposed method is robust and efficient.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following multi-objective opti-
mization problem:

ðMOPÞ
Minimize FðxÞ
Subject to xAX;

(
ð1Þ

where FðxÞ ¼ ðf 1ðxÞ; f 2ðxÞ;…; f pðxÞÞT is a vector-valued function,
X ¼ fxARn : lbrxrubg �Rn is a box set, lb and ub are lower and
upper bounds, respectively. We suppose that f iðxÞ; i¼ 1;2;…; p are
Lipschitz continuous but not necessarily differentiable.

Multi-objective optimization has extensive applications in
engineering and management [2,28,29]. Most of the optimization
problems appearing in real-world applications have multiple
objectives; they can be modeled as multi-objective optimization
problems. However, due to the theoretical and computational
challenges, it is not easy to solve multi-objective optimization
problems. Therefore, multi-objective optimization attracts lots of
researches over the last few decades.

So far, there are two types of methods to solve multi-objective
optimization problems: indirect and direct methods. The indirect
method converts multiple objectives into a single one. One
strategy is to combine the multiple objective functions using the

utility theory or the weighted sum method. The difficulties for
such methods are the selection of utility function or proper
weights so as to satisfy the decision-maker's preferences, and
furthermore, the greatest deficiency of the (linear) weighted sum
method is that we cannot obtain the concave part of the Pareto
frontier. Another indirect method is to formulate the multiple
objectives, except one, as constraints. However, it is not easy to
determine the upper bounds of these objectives. On the one hand,
small upper bounds could exclude some Pareto solutions; on the
other hand, large upper bounds could enlarge the objective
function value space which leads to some sub-Pareto solution.
Additionally, indirect method can only obtain a single Pareto
solution in each run. However, in practical applications, decision-
makers often prefer a number of Pareto solutions so that they can
choose one strategy according to their preferences.

Direct methods devote themselves to explore the entire set of
Pareto solutions or a representative subset. However, it is extre-
mely hard or impossible to obtain the entire set of Pareto solutions
for most multi-objective optimization problems, except some
simple cases. Therefore, stepping back to a representative subset
is preferred. Genetic algorithm (GA), as a population-based algo-
rithm, is a good choice to achieve this goal. The generic single-
objective genetic algorithm can be modified to find a set of
multiple non-dominated solutions in a single run. The ability of
the genetic algorithm to simultaneously search different regions of
a solution space makes it possible to find a diverse set of solutions
for difficult problems. The crossover operator of the genetic
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algorithm can exploit structures of good solutions with respect to
different objectives, which in return, creates new non-dominated
solutions in unexplored parts of the Pareto frontier. In addition,
multi-objective genetic algorithm does not require user to prior-
itize, scale, or weight objectives. Therefore, the genetic algorithm
is one of the most popular metaheuristic approaches for solving
multi-objective optimization problems [18,24,36].

The first multi-objective optimization method based on the
genetic algorithm, called the vector evaluated GA (or VEGA), was
proposed by Schaffer [35]. Afterwards, several multi-objective
evolutionary algorithms were developed, such as Multi-objective
Genetic Algorithm (MOGA) [6], Niched Pareto Genetic Algorithm
(WBGA) [15], Weight-based Genetic Algorithm (WBGA) [13], Ran-
dom Weighted Genetic Algorithm (RWGA) [31], Nondominated
Sorting Genetic Algorithm (NSGA) [38], Strength Pareto Evolu-
tionary Algorithm (SPEA) [52], improved SPEA (SPEA2) [51],
Pareto-Archived Evolution Strategy (PAES) [21], Pareto Envelope-
based Selection Algorithm (PESA) [3], Nondominated Sorting
Genetic Algorithm-II (NSGA-II) [5], Multi-objective Evolutionary
Algorithm Based on Decomposition (MOEA/D) [1,46,47] and
Indicator-Based Evolutionary Algorithm (IBEA) [34].

There are three basic issues [50] in solving multi-objective
optimization problems using the genetic algorithm:

1. Fitness: Solutions whose objective values are close to the real
Pareto frontier should be selected as parents of the next
generation. This gives rise to the task of ranking candidate
solutions in each generation.

2. Diversity: The obtained subset of Pareto solutions should dis-
tribute uniformly over the real Pareto frontier. This reveals the
true tradeoff of the multi-objective optimization problem for
decision-makers.

3. Elitism: The best candidate solution is always kept to the next
generation in solving single-objective optimization problems
using the genetic algorithm. We extend this idea to the multi-
objective case. However, this extension is not straightforward
since a large number of candidate solutions are involved in
multi-objective genetic algorithm.

The aim of this paper is to introduce new techniques to tackle
the issues mentioned above. The rest of the paper is organized as
follows. In Section 2, we review some basic definitions of multi-
objective optimization and the process of genetic algorithm. In
Section 3, we propose an improved genetic algorithm for multi-
objective optimization problems. In Section 4, an evaluation
system for numerical performance of multi-objective genetic
algorithms is developed. Some simulation studies are carried out
in Section 5. Section 6 concludes the paper.

2. Preliminaries

In this section, we first review some definitions and theorems
in the multi-objective optimization, and then introduce the gen-
eral procedure of genetic algorithm.

2.1. Definitions in multi-objective optimization

First of all, we present the following notations which are often
used in vector optimization. Given two vectors

x¼ ðx1; x2;…; xnÞT and y¼ ðy1; y2;…; ynÞT ARn;

then

� x¼ y3xi ¼ yi for all i¼ 1;2;…;n;
� xoy3xioyi for all i¼ 1;2;…;n;

� xry3xiryi for all i¼ 1;2;…;n, and there is at least one
iAf1;2;…;ng such that xioyi, i.e., xay.

� x≦y3xiryi for all i¼ 1;2;…;n.

“4”, “Z” and “≧” can be defined similarly. In this paper, we call
xry x dominates y or y is dominated by x.

Definition 2.1. Suppose that xDRn and xnAX. If xn≦x for any
xAX, then xn is called an absolute optimal point of X.

Absolute optimal point is an ideal point but it may not exist.

Definition 2.2. Let xARn and xnAX. If there is no xAX such that

xrxnðor xoxnÞ;
then xn is called an efficient point (or weakly efficient point).

The sets of absolute optimal points, efficient points and weakly
efficient points of X are denoted as Xab, Xep and Xwp, respectively.
For the problem MOP, XDRn is called the decision variable space
and its image set FðXÞ ¼ fyARpjy¼ FðxÞ; xAXg �Rp is called the
objective function value space.

Definition 2.3. Suppose that xnAX. If

FðxnÞ≦FðxÞ;
for any xAX, xn is called an absolute optimal solution of the
problem MOP. The set of absolute optimal solution is denoted
as Sas.

The concept of the absolute optimal solution is a direct
extension of that for single-objective optimization. It is the ideal
solution but may not exist for most cases.

Definition 2.4. Suppose that xnAX. If there is no xAX such that

FðxÞrFðxnÞðor FðxÞoFðxnÞÞ;
i.e., FðxnÞ is an efficient point (or weakly efficient point) of the
objective function value space F(X), then xn is called an efficient
solution (or weakly efficient solution) of the problem MOP. The sets
of efficient solutions and weakly efficient solutions are denoted as
Ses and Sws, respectively.

Another name of the efficient solution is Pareto solution, which
was introduced by T.C. Koopmans in 1951 [22]. The meaning of
Pareto solution is that, if xnASes, then there is no feasible solution
xAX, such that any fi(x) of F(x) is not worse than that of FðxnÞ. In
other words, xn is the best solution in the sense of “r”. Another
intuitive interpretation of Pareto solution is that it cannot be
improved with respect to any objective without worsening at least
one of the other objectives. The set of Pareto solutions is denoted
by Pn. Its image set FðPnÞ is called the Pareto frontier, denoted
by PF n.

2.2. Genetic algorithm

Genetic algorithm is one of the most important evolutionary
algorithms. It was introduced by John Holland in 1960s, and then
developed by his students and colleagues at the University of
Michigan between 1960s and 1970s [14]. Over the last two
decades, the genetic algorithm was increasingly enriched by
plenty of literatures, such as [9,10,12,19]. Nowadays various
genetic algorithms are applied in different areas; for example,
mathematical programming, combinational optimization, auto-
matic control and image processing.

Suppose that P(t) and O(t) represent parents and offspring of
the tth generation, respectively. Then, the general structure of
genetic algorithm can be described in the following pseudocode.

General structure of genetic algorithm.
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