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Anatomy of the fitness landscape for dense graph-colouring problem
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a b s t r a c t

Graph-colouring is one of the best-known combinatorial optimisation problems. This paper provides a
systematic analysis of many properties of the fitness landscape for random instances as a function of
both the problem size and the number of colours used. The properties studied include both statistical
properties of the bulk of the states, such as the distribution of fitnesses and the auto-correlation, but also
properties related to the local optima of the problem. These properties include the mean time to reach
the local optima, the number of local optima and the probability of reaching local optima of a given cost,
the average distance between global optima and between local optima of a given cost and the closest
local optimum, the expected cost as a function of the distance from a configuration and the fitness–
distance correlation. Finally, an analysis of how a successful algorithm exploits the fitness distance
correlation is carried out.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper investigates the fitness landscape of graph-colouring
for dense random graphs, concentrating in particular on the structure
of local and global optima as a function of the problem size and
number of colours. This allows us to characterise the behaviour of
this problem as we move through the chromatic phase transition
which is widely regarded as marking the transition between easy
and hard problem instances. To undertake this investigation we have
concentrated on problem instance up to around 100 vertices where it
is possible to find the majority of low cost solutions. We have tended
to concentrate on properties that we believe may be important for
deciding between search algorithms and for designing new search
strategies. There is a large number of such properties so as a result
this paper is long. We believe that this reflects the difficulty of
combinatorial search, since so many factors may be influential. In a
previous paper, we performed a similar analysis on the maximum-
satisfiability (MAX-SAT) problem [1]. The current paper is intended to
be independent of the MAX-SAT paper, although interestingly there
is a great similarity in many of the properties (as well as important
differences), which we comment on in the conclusion. In one of our
previous works we studied the landscape of different problems [2]
and pointed out their differences and similarities. This paper in an
extension of that paper which describes the graph-colouring pro-
blem in considerably more detail.

The landscape of the graph-colouring problem has attracted
the attention of many researchers. In the first major effort in

understanding the landscape of the graph-colouring problem, [3]
uses a branch and bound search algorithm to find the local optima,
and studies some properties of the solutions (note that their
notion of a local optimum differs from ours). The major obstacle
to this method is the problem size, where they can study graphs
with up to 20 vertices. Hamiez et al. [4] have studied some
properties of the solutions in the graph-colouring problem includ-
ing the diversity of the configurations in a population of solutions.
Culberson et al. [5] study a property of the landscape that is called
the frozen set. The frozen set is a particular set of vertices that in
every globally optimal configuration of the problem has the same
colour class. Bouziri et al. [6] study the statistical properties of
some benchmark graph-colouring problems. There are several
properties of the fitness landscape that can be studied, such as
the distribution of the fitness function, the number and distribu-
tion of local optima, the structure of the basins of attraction, the
presence and structure of neutral networks, correlation between
the quality of a solution and its distance to a local or global opti-
mum and landscape ruggedness. Porumbel et al. [7] provide some
evidence for the existence of clustering of good solutions in some
graph-colouring problems, and describe an algorithm that might
exploit this. Researchers have tried to propose some measures,
representing the hardness of the problems. It is believed that
presenting some measures for local ruggedness of a problem
provides good indications about the problem difficulty. Some
examples of such measures include auto-correlation [8] and fit-
ness distance correlation [9,10]. Fitness distance correlation
describes the relationship between the fitness functions and
heuristic functions. These characteristics have been studied and
several methods have been proposed to measure some of these
properties [11,9]. However, it was quickly realised that it is easy to
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build problems where these measures do not reflect the problem
difficulty [12]. Another active line of research has been to look at
algebraic properties of landscapes and particularly elementary
landscapes [13,14], which are shared by many well known NP-
hard problems. Graph-colouring is an elementary landscape
although MAX-SAT is not. Unfortunately these properties do not
correlate with problem difficulty and therefore are not studied in
this paper.

The rest of this paper is organised as follows. In the next section
we introduce the graph-colouring problem and describe some of the
features required for interpreting the results in later sections. We
also describe the local search algorithmwe use to find the optima in
the landscape. Section 3 describes some statistical properties of
random configurations, auto-correlation, and some properties of
global and local optima, including the number of steps a local-search
algorithm takes to get to a local optimum, number of local and
global optima and distance between the optima. In Section 4, we
examine the expected fitness of configurations in Hamming spheres
of different radii from a local optimum. We also consider the pro-
bability of returning to a local optimum starting from a randomly
chosen configuration in the Hamming sphere. We draw conclusions
including making comparisons with MAX-SAT in Section 5.

2. Graph-colouring problem

In this section, we describe the graph-colouring problem and
how we make the problem instances. We finish this section with a
discussion about the local-search algorithm we use to find the
local optima, and the way we distinguish different local optima
from each other.

2.1. Problem definition

The graph-colouring problem is a combinatorial optimisation
problem which belongs to the class of NP-hard problems. Given an
undirected graph GðV; EÞ, with a vertex (node) set V and edge set E,
and k different colours, the graph-colouring problem is defined as
finding a colouring of the vertices to minimise the number of
edges whose vertices share the same colour. We denote a config-
uration of the graph-colouring problem with k colours as a vector
x of size n¼ jV j , with elements xiAf1;2;…; kg representing the
colour of the ith node. The cost of a configuration x is defined as
the number of colour conflicts in the graph, i.e., the number of
edges whose vertices have identical colours. That is

cðG; xÞ ¼
X

ði;jÞAE
1xi ¼ xjU; ð1Þ

where 1predicateU denotes the indicator function that is equal to
1 if the predicate is true and 0 otherwise. The chromatic number,
χðGÞ of a graph, G, is defined to be the smallest number of colours k
such that a configuration exists that has no colour conflicts (i.e. a
cost of zero). We consider the problem of finding low cost confi-
gurations (i.e. try to minimise the number of colour conflicts).

In this paper, we concentrate on instances drawn from the
ensemble of random graphs Gðn;pÞ, consisting of graphs with n
vertices where each edge is drawn with a probability p. A graph is
represented by an n� n adjacency matrix, G. We generate these
problem instances randomly, where the probability of two nodes
being connected (the probability of an edge existing) is p. Thus a
graph is generated as Gði; jÞ ¼ ½Rð0;1Þop�, for i; j¼ 1…n, ia j, where
Rð .,. Þ is a uniform random number generator and ½predicate� ¼ 1 if
predicate¼true and ½predicate� ¼ 0 if predicate¼false. We focus on
the case p¼0.5, so that the graphs are dense (a dense graph is one
where p remains fixed as n increases so the number of edges grow is
of order n2. In contrast, in sparse graph p¼ 1=n, so that the number

of edges per vertex remains fixed). From preliminary investigations,
we found that the greatest determiner of the structure of the fitness
landscape is its proximity to the phase-transition. By investigating
the landscape as a function of n and the number of colours, k, we are
able to characterise the behaviour around the phase-transition. Thus,
we believe that the behaviour we report is typical of dense graphs at
other values of p.

2.2. Colour symmetry and distance measures

An important feature of graph-colouring is that if we permute
all the colours, then the cost is unchanged. As there are k!
permutations of the colours, there is a k!-fold symmetry in the
search space. Graph-colouring can also be viewed as a partitioning
problem, where we try to partition the vertices into k partitions so
as to minimise the number of edges with vertices in the same
partition. In this partition view of the problem we eliminate the k!
symmetry of the problem. Although it is more logical to view
graph-colouring as a partitioning problem, most algorithms treat
the problem as a colouring problem. This reflects the fact that
partitions are difficult to treat (e.g. it is non-trivial to determine
whether two partitions are identical). In this paper, we have tried
to accommodate both views of the problem: either as a colouring
problem with a k!-fold symmetry or as a partition problem.

As a consequence of these two views of the problem we
consider two distance measures between configurations. The first
is the Hamming distance defined as

Dhðx; yÞ ¼
Xn
i ¼ 1

1xiayiU: ð2Þ

The second measure is a measure of the ‘partition distance’
defined as

Dpðx; yÞ ¼min
π

Dhðx;πðyÞÞ; ð3Þ

where πð�Þ is a permutation operator that permutes the colours. The
minimisation is over all possible permutations of the k colours. The
partition distance measures the smallest number of reallocations of
partition membership to make the partition represented by x into
the partition represented by y. When the Hamming distance is
small, it is often the same as the partition distance. In practice, we
can compute the partition distance in Oðk3Þ by representing the
colour matching as a linear assignment problem and using the
Hungarian algorithm [15].

It is useful to understand the distribution of distances between
random configurations. Note that this property depends only on
the number of vertices, n, and number of colours, k, but is
otherwise independent of the problem instances. For two ran-
domly generated configurations the probability that the Hamming
distance is equal to h is given by a binomial distribution

P Dhðx; yÞ ¼ hð Þ ¼ n
h

� �
1�1

k

� �h 1
k

� �n�h

; ð4Þ

so that the expected Hamming distance between randomly chosen
configurations is

EðDhðx; yÞÞ ¼ n 1�1
k

� �
: ð5Þ

We are not aware of an analytic formula for the probability
distribution of partition distances between randomly drawn con-
figurations. In Fig. 1b we show the probability distribution of
distances between randomly chosen pairs of configurations. The
partition distance is measured empirically by sampling.

The average partition distances between the solutions in the
search space for different values of n and k are shown in Fig. 1b. In
this figure, the horizontal axis is k and the vertical axis is the
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