
Sustainable Computing: Informatics and Systems 10 (2016) 36–47

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

jou rn al hom epage: www.elsev ier .com/ locate /suscom

A genetic algorithm based approach for multi-objective
hardware/software co-optimization

Tania Banerjee ∗, Mohamed Gadou, Sanjay Ranka
Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, United States

a r t i c l e i n f o

Article history:
Received 13 December 2015
Received in revised form 4 April 2016
Accepted 5 April 2016

Keywords:
Spectral element methods
Power and energy evaluation
Performance benchmarking
Exascale
Hardware/software co-optimization

a b s t r a c t

We develop a genetic algorithm based autotuning strategy in this paper. Autotuning is a platform inde-
pendent code optimization process in which different hardware and software parameters of the code
being optimized are identified and the parameter space explored to arrive at an alternative implemen-
tation that optimizes characteristics such as performance and energy consumption. The main advantage
of our approach is that the number of possible compilations and executions that are explored in the
configuration space is substantially smaller than exhaustive search. We demonstrate the usefulness of
our approach to the underlying small matrix multiplication routines in spectral element solvers. The
latter are an important class of higher order methods that are expected to be computationally intensive
portion of the next generation of large scale CFD simulations. Our experimental results were conducted
on a variety of existing platforms as well as on gem5 simulator platform with different cache configu-
rations. On an existing platform, AMD Fusion, the genetic algorithm is able obtain 34% improvement in
performance and 37% reduction in energy consumption over existing versions of the code. The fact that
a very small fraction of the entire configuration space needs to be explored becomes very useful as algo-
rithmic exploration is combined with exploration of cache configuration resulting in hardware/software
co-optimization. We used the micro-architectural simulator, gem5, to evaluate different cache configu-
rations for energy and performance trade-offs for out-of-order x86 cores at the micro-architectural level
for small matrix multiplications. Our results show how genetic algorithm based autotuning strategy can
come up with a close to optimal variant analyzing only about 0.25% of the exploration space.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The increasing complexity of computer architecture has made
it very difficult to program codes with optimum performance.
Processor features such as vector units, multithreading and pipelin-
ing requires varied and complex optimization techniques that are
rather difficult to handle either automatically by today’s compilers
or manually by the programmer. The problem further aggra-
vates when we have multiple and often conflicting objectives for
optimization. A practical method of optimizing these codes is auto-
tuning. Autotuning is a method of empirical optimization in which
the configuration space of a code is automatically explored in a
systematic manner along with hardware parameters that impact
performance and energy requirements of the algorithm, thereby
finding the best values for these parameters on a given platform.
Autotuning results in highly tuned codes for specific architectures

∗ Corresponding author.
E-mail addresses: tmishra@cise.ufl.edu (T. Banerjee), mgadou@cise.ufl.edu

(M. Gadou), ranka@cise.ufl.edu (S. Ranka).

and has the potential for significantly improving performance and
energy requirements. Attractive though it is as an optimization
technique, autotuning involves exhaustive exploration of param-
eter space which is time consuming. As the number of tunable
parameters is increased, the exploration space increases exponen-
tially and exhaustive search quickly becomes infeasible.

We developed a genetic algorithm (GA) based search mecha-
nism that efficiently explores the parameter space to obtain close
to optimal parameter settings for a given code. GA is a technique
for solving optimization problems with or without constraints and
imbibes the principles of natural selection followed in biological
evolution [1]. GA has been used in a vast area of applications includ-
ing multiple sequence alignment in bioinformatics [21], to find out
weak links in approximate computing in computer architecture
[22], and in natural language processing [23]. We use our opti-
mization strategy on spectral element method (SEM) which is a
high-order weighted residual technique that provides the geomet-
ric flexibility of finite elements, rapid convergence properties and
tensor-product efficiency benefits of global structure methods [2].
They are expected to form the core computation of a large num-
ber of applications targeted for exascale computing. NEK5000, a

http://dx.doi.org/10.1016/j.suscom.2016.04.001
2210-5379/© 2016 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.suscom.2016.04.001
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2016.04.001&domain=pdf
mailto:tmishra@cise.ufl.edu
mailto:mgadou@cise.ufl.edu
mailto:ranka@cise.ufl.edu
dx.doi.org/10.1016/j.suscom.2016.04.001

T. Banerjee et al. / Sustainable Computing: Informatics and Systems 10 (2016) 36–47 37

publicly available software, is based on SEMs and is expected to
be used in a variety of applications for simulating fluid flow, heat
transfer and magneto hydrodynamics as well as electromagnet-
ics [7]. CMT-Nek, an ongoing development effort at the University
of Florida for compressible multiphase turbulence, is based on
NEK5000. One of the most compute intensive kernels of SEM is
derivative computation involving small matrix matrix multiplica-
tions and CMT-nek is expected to compute derivatives for 25–50%
of its runtime.

Matrix matrix multiplication has been studied extensively in
literature for large matrices. SEM, on the other hand, uses small
matrices (generally of sizes between 4 × 4 and 16 × 16). Achieving
high performance matrix multiplications for small matrices is sig-
nificantly more challenging than larger matrices as the number of
times data elements are copied from memory/cache to registers is
relatively small. Thus the computation to data access requirements
is significantly higher for smaller matrices. Our goal in this paper is
to obtain high performance and energy efficient implementations
of SEM methods for a variety of existing architectures, as well as to
explore hardware/software configuration space, thereby demon-
strating the efficiency of our autotuning method. In particular, we
use loop unrolling and loop permutation for code transformation
with the relevant software parameters being loop unroll factors and
permutation sequences. We also use hardware parameters, cache
size, line size and set associativity, for different cache configura-
tions.

The main contributions of this paper are as follows:

1) We present a genetic algorithm based driver for our autotuning
approach which effectively navigates through the large config-
uration space of the algorithms being optimized. This approach
reduces the number of configurations that need to be compiled
and experimentally evaluated as compared to an exhaustive
approach. The approach can be used to optimize performance
and/or energy and potentially a combination of these or other
objectives.

2) Using the genetic algorithm based approach, we develop
improved implementations of the NEK5000 SEM algorithm
for multi-core architectures of traditional CPU cores for per-
formance and energy. In particular our best codes result in
implementations on AMD Fusion cores that are faster by 34%
on an average as compared to the original manually tuned ver-
sion of NEK5000. The amount of energy requirements are also
about 37% lower on an average.

Our results also show performance and energy requirements
are highly correlated for the target architectures. Thus, multi-
objective optimization based on performance and energy can
be greatly simplified as optimizing for performance generally
results in better energy requirements and vice versa.

3) We demonstrate an efficient exploration of hardware/software
design space for SEM applications using GA based search. Inclu-
sion of hardware parameters causes the search space to become
more huge. Our experiments show that GA based search can
come up with close to optimal variant after evaluating only 0.25%
of the search space.

The rest of the paper is described as follows. In Section 2, we
briefly describe the spectral methods in the context of NEK5000.
Section 3 provides our genetic algorithm based autotuning and
optimization method for the underlying small matrix multiplica-
tions on traditional CPU cores and on gem5 simulator framework.
Section 4 provides experimental evaluation and we conclude in
Section 5.

2. Spectral element methods and NEK5000

NEK5000 [2] is a scientific code for modeling incompressible
flows using computational fluid dynamics solver based on SEM.
The code was recognized for its algorithmic quality and sustained
parallel performance in 1999 with the Gordon Bell prize. It has been
shown that the code scales to over a million cores.

One of the most compute intensive section of the NEK5000 code
is the spectral element solver which performs matrix–vector mul-
tiplication repeatedly for each spectral element. The tensor product
structure of the SEMs allows the matrix–vector products to be com-
puted as a sequence of matrix–matrix multiplications, which are
used to numerically compute partial derivatives of a function U,
represented as uijk in three dimensional space. The derivatives of U
along the Cartesian coordinates (r, s, t) are given by the following
equations,

∂U

∂r

∣∣∣∣
i,j,k

=
Nx∑

l=1

Ailuljk (1)

∂U

∂s

∣∣∣∣
i,j,k

=
Ny∑

l=1

Bjluilk (2)

∂U

∂t

∣∣∣∣
i,j,k

=
Nz∑

l=1

Ckluijl (3)

where an element in three dimensional space is assumed to have
Nx × Ny × Nz Gauss–Lobatto quadrature points with values of U
being defined at those points. A, B, C are the derivative opera-
tors, of dimensions Nx × Nx, Ny × Ny and Nz × Nz respectively. If
Nx = Ny = Nz = N then, B = C = AT. From Eqs. (1), (2) and (3) we observe
that for computing these derivatives, the fastest changing index
in U are the first, middle and last indices respectively. Thus the
memory access pattern for matrix U is different for each of the
derivatives. For example, for computing partial derivatives along
r, contiguous memory addresses are accessed, whereas for com-
puting those along s and t, memory is accessed in strides of Nx

and Nx × Ny addresses respectively. Nx, Ny, Nz represent order of
the polynomials that are fitted and values between 5 and 25 yield
highly accurate results. Thus instead of large matrices, SEM requires
the solution of a large number of matrix multiplications of very
small matrices. We address efficient solutions for this problem in
this paper.

The basic set of equivalent codes for computing partial deriva-
tives along r are given in Fig. 1. We apply loop transformations to
the algorithms of Fig. 1 and benchmark the resulting implementa-
tions for power and performance. For computing partial derivatives
along the s and t directions, similar sets of codes are used, except,
memory access patterns for the 4loop version of partial derivatives
along s, prevents loop fusion – so, a 4loop-fused version of code does
not exist for this derivative.

We impose the following restrictions on the configuration space
based on NEK5000 specifics and compiler characteristics:

1) The matrix dimensions are considered identical in each direc-
tion. Thus, Nx = Ny = Nz = N for a three dimensional matrix.

2) Unroll factors are divisors of the matrix sizes considered. This
is helpful in eliminating any residual code that would be nec-
essary otherwise. Processing the residual code for small matrix
multiplications is a non-negligible overhead.

3) The unroll factors are limited by an amount that is likely to fill the
L1 instruction cache. When the entire code fits the L1 instruction
cache, performance is much better since otherwise instruction
cache misses would impact performance.

Download English Version:

https://daneshyari.com/en/article/493777

Download Persian Version:

https://daneshyari.com/article/493777

Daneshyari.com

https://daneshyari.com/en/article/493777
https://daneshyari.com/article/493777
https://daneshyari.com

