
Sustainable Computing: Informatics and Systems 7 (2015) 11–23

Contents lists available at ScienceDirect

Sustainable Computing:  Informatics  and  Systems

jou rn al hom ep age: www.elsev ier .com/ locate /suscom

A  study  of  energy-aware  implementation  techniques:
Redistribution  of  computational  jobs  in  mobile  apps

Luis  Corral,  Anton  B.  Georgiev ∗,  Alberto  Sillitti,  Giancarlo  Succi
Free University of Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 28 February 2014
Received in revised form 5 November 2014
Accepted 16 November 2014

Keywords:
Android
Energy
Green
Mobile
Offloading
Reallocation

a  b  s  t  r  a  c  t

As  devices  like smartphones  and  tablets  have  been  adopted  by millions  of  users,  the offer  of  mobile  soft-
ware  products  and  services  has  as  well  evolved  significantly.  Current  mobile  software  products  require
hardware  resources,  computer  job  and network  connectivity  that  is  reflected  in  increasing  power  needs.
This  power  demand  represents  a major  challenge  to the  strong  autonomy  requirement  of  mobile  devices,
powered  by  batteries.  As  a consequence,  one  of the  most  important  qualities  of  mobile  software  devel-
opment  is the ability  to  produce  applications  that  consume  energy  resources  wisely.  To  accomplish  this
goal,  different  approaches  have  been  proposed,  including  energy-aware  software  design  and  implemen-
tation  techniques.  The  energy  aware  software  design  techniques  considered  in  this  work  are  two:  Method
Reallocation,  which  refers  to the placement  of pieces  of  code  in different  execution  scopes  within  a single
target  (e.g.,  kernel  space,  application  space,  shared  library  space),  and  Method  Offloading,  which  refers  to
the placement  of pieces  of  code  in  external  resources  in  different  scopes  (for  instance  a  remote  server).
Both  techniques  aim  to  economize  resources  like processing  power,  and  memory  usage,  but  always  upon
the expenses  carried  by  interfacing,  communication  and  network  overhead.  Our goal  is  to investigate
how  each  one  can contribute  to reduce  the  overall  energy  consumption  of  a mobile  software  application.
As  an  experiment,  we  utilized  a mobile  application  that  runs  software  benchmarks  coded  in Java and
C.  We exercised  the benchmarks  in  different  execution  scopes  within  the  handheld  target  and  a  remote
server  counterpart,  measuring  the  amount  of energy  required  to complete  each  job.  After  determining
the  energy  consumed  by  each  routine  for each  execution  scope,  we identified  in what  cases  it  is  con-
venient  to reallocate  the  processing  job,  and  when  it is  advisable  to  offload  it  to an  external  execution
environment.

©  2014 Elsevier  Inc.  All  rights  reserved.

1. Introduction

Energy consumption is understood as the amount of power that
a device takes to carry out an operation. In the mobile execution
environment, energy consumption is an important characteristic
that developers and end users deeply care about. Mobile devices
are carried by their owners, most of the time away from a perma-
nent power source like an electrical power outlet. Current mobile
software products keep up an increasing requirement of hard-
ware resources, computer job and network connectivity that is
reflected in increasing power demand. This need represents a major
challenge to the strong autonomy requirement of mobile devices.
Modern mobile applications take full advantage of the device’s

∗ Corresponding author. Tel.: +39 0471 016245.
E-mail addresses: luis.corral@unibz.it (L. Corral), anton.georgiev@unibz.it

(A.B. Georgiev), alberto.sillitti@unibz.it (A. Sillitti), giancarlo.succi@unibz.it
(G. Succi).

features like sensors, antennas and hardware components that,
together with their strong computing capabilities require a higher
amount of battery resources and trigger the need of recharging the
device constantly. These conditions pose on developers an impor-
tant concern: how to design and implement mobile applications
that help the end user to accomplish his goals, but at the same time
provide an efficient, energy aware operation that will not consume
the energy resources of the target device.

The importance of an effective use of resources in a software
system is considered both by developers and users as an impor-
tant quality. In particular, in the mobile execution environment, the
efficient utilization of resources, including energy consumption,
represents a fundamental property and an imperative to evaluate
the overall quality and usefulness of the final product [1].

In this paper, this work extends the results we  got in the
paper [2] analyzing the following data. Rerun the data collection,
extends the data, we investigate the impact that the allocation of a
method has in the overall energy consumption of a mobile appli-
cation. We  used two  implementation techniques to distribute the

http://dx.doi.org/10.1016/j.suscom.2014.11.005
2210-5379/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.suscom.2014.11.005
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2014.11.005&domain=pdf
mailto:luis.corral@unibz.it
mailto:anton.georgiev@unibz.it
mailto:alberto.sillitti@unibz.it
mailto:giancarlo.succi@unibz.it
dx.doi.org/10.1016/j.suscom.2014.11.005


12 L. Corral et al. / Sustainable Computing: Informatics and Systems 7 (2015) 11–23

computational job for energy efficiency: Method Reallocation and
Method Offloading. These techniques aim to reduce the energy con-
sumed by processing load in the mobile device by sending the tasks
to an external target through a network. However, one should bear
in mind that the use of interfacing devices (such as WiFi, 3G/2G
antennas) may  require a considerable energy toll, and that the pay-
off can turn into a backfire. This motivates the need of conducting
an experiment that provides empirical evidence about the behav-
ior of this situation in different settings, which require more or less
computing power, and more or less network traffic. To this end,
we implemented an experiment utilizing a mobile application that
runs software benchmarks coded in Java and C. We  exercised the
benchmarks in different execution scopes, within the mobile tar-
get and using remote server counterpart, measuring the amount of
energy required to complete each job. After determining the energy
consumed by each routine for each execution scope, we identi-
fied in what cases it is convenient to reallocate the processing job,
and when it is advisable to offload it to an external infrastructure.
Our objective is to shed light on energy-efficient approaches for
designing and implementing a mobile application.

The rest of this paper is organized as follows: Section 2 dis-
cusses diverse energy-aware software design techniques; Section
3 describes the selection and implementation of some energy-
aware software design techniques in the form of an experiment on
Android; Section 4 describes the methodology and environment
created to carry out our experimentation; Section 5 presents the
results obtained and the discussion on the results; Section 6 com-
ments the related work; finally Section 7 identifies directions for
future work and draws the conclusions.

2. Energy-aware software implementation techniques

The need of energy-efficient applications rises before the begin-
ning of the smartphone era. The impact of the energy consumption
has always affected mobile devices, but became a bigger issue with
the introduction of modern mobile operating system such as iOS
or Android, which promoted the utilization of hand held devices
from simple communication and gaming features to more com-
prehensive computing applications. A vast variety of applications
promoted a higher utilization of the mobile device and a higher
demand of hardware features that take a significant toll from the
battery reserves. Device manufacturers strive to progress in provid-
ing better battery technologies but it is difficult to keep up with the
evolution of the computing capabilities and the demand of energy
required to operate modern smartphones. From the software point
of view, large and complex applications tend to stress heavily dif-
ferent components of the device like CPU, memory, storage, etc.
There are different approaches to accomplish mature energy aware
applications. From the research and practitioner point of view, sev-
eral have taken the effort to lower the demand of energy, from a
software point of view, in an effort to increase battery lifetime.

2.1. Energy aware frameworks

After surveying the literature we found frameworks for energy-
aware mobile application design. They are based on the dynamic
adaptation through an energy profiler module, energy policies and
energy adaptation APIs [3]. The energy profiler module recog-
nizes all the system states and estimates the energy demanded
by an application; the energy policies module executes the energy
adaptation invoking finally the energy adaptation APIs. With this
implementation, when energy adaptation occurs, several parame-
ters related to the quality of the service change. As consequence,
this improvement compromises the software product in terms of
quality, usability or user-friendliness. Another disadvantage is that

Fig. 1. Method reallocation.

they need to implement only an energy aware framework compat-
ible with the developed application.

2.2. Method reallocation

Another way  of optimizing the energy invested to execute
computational job is method reallocation [2]. Method reallocation
refers to the analysis of a software product (i.e., an application) as
means of a stack (for instance, kernel level, library level, API level,
native code level, virtualized level, etc.) Having this structure facili-
tates the analysis of the energy costs associated to the components
of each level of the stack (Fig. 1).

With this analysis at hand, it is recommended the reorganiza-
tion of the classes and methods through the different levels of the
software stack, in a way  in which the classes and methods can be
placed in the level where the energy consumption is minimal. As a
limitation, this technique can be utilized only if the operating sys-
tem and the software development environment allow developer
to go through the different levels of the software stack.

2.3. Method offloading

Process offloading (also known as cyber foraging or remote exe-
cution) [4–7] is a technique in which heavy computation jobs are
sent to a remote computer; after the end of the remote execution,
the result is sent back to the local machine (Fig. 2).

The aim of offloading is to improve the performance of applica-
tions running under the low computational capabilities of laptops,
moving the largest computations to more powerful surrogate com-
puters. The application of the offloading technique became highly
relevant with the advancement of smartphones aiming to extend
their battery lifetime. This reorganization of the system aims to
economize processor and memory, upon expenses of and network
usage and communication overhead [8–13]. In addition, method
offloading can be orchestrated by self-adapting algorithms that
may  decide whether to or not to offload a computational job.

Local Environment 

Internet 
Method 1

Method 2

Remote Environment

Method N

Fig. 2. Method offloading.



Download English Version:

https://daneshyari.com/en/article/493792

Download Persian Version:

https://daneshyari.com/article/493792

Daneshyari.com

https://daneshyari.com/en/article/493792
https://daneshyari.com/article/493792
https://daneshyari.com

