
Regular Paper

Towards power plant output modelling and optimization using parallel
Regression Random Forest

Jan Janoušek, Petr Gajdoš, Pavel Dohnálek n, Michal Radecký
Department of Computer Science, FEECS VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic

a r t i c l e i n f o

Article history:
Received 29 October 2014
Received in revised form
16 July 2015
Accepted 22 July 2015
Available online 14 August 2015

Keywords:
Random Forests
Regression
GPU
CUDA
Parallel computing

a b s t r a c t

In this paper, we explore the possibilities of using the Random Forest algorithm in its regression version
to predict the power output of a power plant based on hourly measured data. This is a task commonly
leading to a optimization problem that is, in general, best solved using a bio-inspired technique. We
extend the results already published on this topic and show that Regression Random Forest can be a
better alternative to solve the problem. A comparison of the method with previously published results is
included. In order to implement the algorithm in a way that is as efficient as possible, a massively
parallel implementation using a Graphics Processing Unit was used and is also described.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the operation of a power plant is an expensive endeavor,
there is a great demand for reliable and accurate ways and methods
to make the operation as efficient as possible, be it in terms of fuel
consumption or making decisions about the way to utilize the
power plant's capabilities to fit the current demand for electricity.
One of the ways to help achieve such goals is to predict the plant's
output power based on some parameters that can be measured
during its operation. This is often done using some optimization
technique. Among the successful ones, Swarm Optimization was
shown to provide interesting results [1]. Optimizing a power plant's
operation, however, is not limited to swarms – [2] presents the Bee
Colony Optimization as a way to approach the problem, a fuzzy
model trained by genetic algorithms was used in [3] while [4]
elaborates on multi-objective optimization with respect to a plant's
operation economy.

Since the output power is usually a real number (or integer at
best), the task of predicting the power based on input variables
clearly suggest a regression problem. In this paper, we elaborate on
the results already provided by Tüfekci in [5] and extend themwith
the suggestion to use the Regression Random Forest (RRF) algo-
rithm. The method used by Tüfekci that is most similar to RRF is the
WEKA implementation of the REPTree class, possibly extended by

bagging. However, REPTree creates a number of trees and then
selects the one that fits the training data best. RRF provides an
option to use multiple trees in unison, eventually improving the
results. This is elaborated in more detail later in this paper. The
parallel implementation of RRF also described in this paper brings
advantages over its classical implementations in terms of
computation speed.

In this research, real-world data from a Combined Cycle Power
Plant (CCPP), which consists of gas turbines, steam turbines and
heat recovery system generators, was used. The parameters on
which the power output is predicted are selected based on what
individual parts of the plant are sensitive to. While gas turbines are
sensitive to ambient variables such as temperature, pressure and
relative humidity, steam turbines are highly influenced by the
exhaust steam pressure, also called the vacuum. These are the four
parameters that are used as input values in this study. The predicted
variable is the electric power PE generated by the plant. A more
detailed description of the power plant can be found in [5].

2. Decision trees

To provide a briefer and easier-to-understand explanation of
how decision trees work, we provide a description of the classi-
fication version of the tree, with transition to Random Forest and,
finally, its regression version. However, the modifications to create
the regression version are not that complex and are well described
in [6].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

http://dx.doi.org/10.1016/j.swevo.2015.07.004
2210-6502/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: jan.janousek@vsb.cz (J. Janoušek),

pavel.dohnalek@vsb.cz (P. Dohnálek).

Swarm and Evolutionary Computation 26 (2016) 50–55

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2015.07.004
http://dx.doi.org/10.1016/j.swevo.2015.07.004
http://dx.doi.org/10.1016/j.swevo.2015.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.07.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.07.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.07.004&domain=pdf
mailto:jan.janousek@vsb.cz
mailto:pavel.dohnalek@vsb.cz
http://dx.doi.org/10.1016/j.swevo.2015.07.004


The decision tree is a classification method that has been
known for some time [7]. It is a binary tree where each node
except for leaves consists of decision rules that determine which
branch to go through next. The leaves of the tree contain a specific
class. When estimating the class of an input vector, the tree is
traversed from its root to the leaves.

The decision rules in individual nodes can be seen as functions.
These functions are often referred to as split functions or weak
learners [8]. They are defined as

f ðx;θÞ : χ � τ-0;1; ð1Þ
where x is a given vector from the input set χ and θ are the
parameters of a test function from the set τ. This function performs
mapping to the false and true values in order to determine which
branch of the tree should be selected for continuation.

There is a large number of split functions that can be used [9].
The most common and least computationally demanding is the
axis-aligned hyperplane. This split function is determined by an
index of the feature (according to which the split is made) and a
limit value (a threshold). Mores split functions are frequently used,
such as the general oriented hyperplane, conic learner and other both
linear and non-linear functions [10–12]. It is important to mind that
using a more complex function can provide better results, but may
be more computationally demanding.

When building a decision tree, the goal is to find the best
parameters for the split function. It is an optimization problem in
which we seek to find the parameters that minimize the classifica-
tion error. This error is proportional to the probability of selecting a
particular class during random selection from the set of vectors that
were assigned to the same group based on the split function.

As a metric for describing the quality of a split using a specific
split function, information gain or Gini impurity is often used. In
this work, we selected information gain which is based on the
concept of entropy from information theory. Information gain is
given by

GðSÞ ¼ �
XC
i ¼ 0

pðciÞ log ðpðciÞÞ; ð2Þ

where C is the number of classes and pðciÞ is the probability of
selecting a vector of class i from the vector set S. The optimization
goal is to maximize the improvement obtained by the split based
on the following formula:

I ¼ GðSÞ�
X

i � fL;Rg

j Si j
jSj GðSÞ: ð3Þ

In a similar way, we can define the entropy for continuous output
values. To construct a decision tree, it is necessary to define the
conditions that determine the tree's growth termination point. This
condition can be, for example, the fact that after the last split there
are only vectors belonging to a single class in the current branch. This
condition is not flawless, because it can lead to a phenomenon
known as overfitting, a situation in which the tree loses its ability to
generalize. A better condition may be, for example, a limit for the
information gain that was obtained with the last split. The final class
of a leaf is then determined by the maximum likelihood of selecting
the class from the set of vectors belonging to that branch. At the
same time we are able to read from the leaf the probability that the
class was determined correctly. An example of a decision tree,
namely the Classification and Regression Tree (CART) in its classifica-
tion mode, is pictured in Fig. 1.

2.1. Random Forest

Although the decision tree has been known for a considerable
time, it has experienced a renaissance in recent years. This is due

to the discovery that an ensemble of slightly different trees can
provide better generalization for previously unseen inputs [13].
Because of this, the algorithm is more robust and can produce
results more accurate than other models.

One of the algorithms that utilize this is the Random Forest. This
algorithm uses randomness when building each of the many trees it
merges into a single ensemble technique. Each new tree is created
from a subset of the input vectors. This process is called bagging.
From a set of all inputs, a certain percentage of vectors is selected
and these vectors are then used to build a new tree. The selections
are performed independently of each other, leading to some of
them being present in the training set for more than one individual
tree while others may not be included in any training set at all.
Bagging helps to reduce the variance of the data and avoid tree
overfitting.

Bagging is not the only part where randomness is utilized.
Random Forest performs random optimization of the split func-
tions. This means that the split function parameters are selected
randomly. If the axis-aligned hyperplane is used, these parameters
are the indices of the features that will be used for the split and
threshold. This approach ensures that the newly grown trees will
differ and provide margin-maximization [14]. Margin-maximiza-
tion, in turn, provides better generalization and higher accuracy.
The same principle is used, for example, in the Support Vector
Machine [15,16].

The classification result of the entire forest is given by voting
that can be expressed as

Crf ¼ votingfCðxiÞgN1 ; ð4Þ

where Crf is the classification answer of the entire forest, xi is the i-
th observation being classified and N is the number of trees in the
forest.

We can also explain how a combination of existing models
reduces the total classification or regression error. There are three
basic types of errors incurred during the classification task.

1. Noise – quantifies the output deviation from the optimal
answer.

2. Bias – the average error of the model with regards to the
optimal answer.

3. Variance – error that describes the error rate of the model
during training on various learning sets.

The total model error is given as the sum of the above
mentioned errors. As describing the solution to minimize this

x3 < 2.45

versicolor virginica

setosa x4 < 1.75

virginicax3 < 4.95

virginicax4 < 1.65

Fig. 1. An example of a decision tree, in this case a Classification and Regression
Tree. This is a well-known example from MATLAB, portraying classification
procedure of flowers, based on 4 input parameters (x1 through x4). The tree is
strictly binary, the condition in a blue node (a decision rule), if met, allows to
transition into the left subtree. The right subtree is visited if the condition is not
met. The orange leaf nodes represent the final classification. (For interpretation of
the references to colour in this figure caption, the reader is referred to the web
version of this paper.)

J. Janoušek et al. / Swarm and Evolutionary Computation 26 (2016) 50–55 51



Download English Version:

https://daneshyari.com/en/article/493919

Download Persian Version:

https://daneshyari.com/article/493919

Daneshyari.com

https://daneshyari.com/en/article/493919
https://daneshyari.com/article/493919
https://daneshyari.com

