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a b s t r a c t

An extensive numerical study has been conducted to shed some light on the selection of parameters for the
Classical Differential Evolution (DE/rand/1/bin) optimization method with the dither variant. It is well
known that the crossover probability (Cr) has an active role in the convergence of the method. Our
experiments show that evenwhen the number of generations needed to achieve convergence as a function
of the Cr parameter is of a stochastic nature, in some regions a reasonably well defined dependence of this
number as a function of Cr can be observed. Motivated by this result, a self-adaptive DE methodology has
been proposed. This new methodology applies the DE/rand/1/bin strategy itself to find a good value for the
Cr parameter. Regarding the population size parameter, a phenomenological study involving the search
space, the tolerance error, and the complexity of the function has been made. The proposed methodology
has been applied to 10 of the most common test functions, giving the best success rate (100% in all the
studied examples) and in general a faster convergence than the classical DE/rand/1/bin strategy.

& 2015 Published by Elsevier B.V.

1. Introduction

There are good reasons why the Differential Evolution optimi-
zation algorithm is so commonly used (see, for example, [1] for a
survey of the state-of-the-art of the DE method; [2] for a survey of
the state-of-the-art on Real-parameter evolutionary multimodal
optimization methods and [3] for a literature review on Memetic
algorithms). However, as with practically all metaheuristic opti-
mization methods, DE possesses certain parameters that affect (in
many cases negatively) its convergence. One must frequently
spend hours trying to find which set of parameters are the most
appropriate for a specific problem. The control parameters of the
classical DE method are the crossover probability Cr, the mutation
scale factor F, and the population size Np. The number of genera-
tions (gmax) is not considered as a control parameter because one
can implement some stopping criteria. Nevertheless, it would be of
great help to have an estimate of this number in order to prevent a
very long running time of the program. Empirical recipes are fre-
quently used to choose these parameters. For example, in [4], the
values from 5D to 10D, with D being the dimensionality of the
objective function, are suggested for Np. In [5], those values are
extended from 2D to 40D. Regarding Cr, most authors suggest

values on the order of 0.1 and 0.9 [1,4–6]. The mutation scale
factor is a real number greater than or equal to zero, although in
the literature, values greater than one are rarely chosen [7–9].
However, for the dither variant, the parameter F is chosen ran-
domly. In our study, F is chosen as a random number in [0,1).
An interesting study where F is chosen randomly in the interval
ð0:5;1Þ is presented in [10].

A possible solution to the problem of finding a good set of control
parameters consists in implementing an algorithm which maintains
the essentials of the DE algorithm but is capable of adapting or self-
adapting the control parameters. Following Eiben's definition [11,12],
by adaptation we will understand that the control parameters are
changed during evolution based on some feedback from the search.
On the other hand, self-adaptation will imply that the parameters will
evolve during the evolution through an inclusion into the genetic
encoding that is itself subjected to the evolutionary process.

The idea of adaptation and/or self-adaptation (AD/SA) for
evolutionary programs was introduced in [13]. A survey of
operators and strategy parameters for self-adaptation in evolu-
tionary algorithms can be found in [14]. Also there is the recom-
mended reference [15], where some adaptive and self-adaptive
strategies are outlined.

Despite the considerable number of papers on AD/SA strategies
applied to DE, it is somehow strange that, as far as we know, there is
no paper using the DE method itself to implement the concept of AD/
SA. Nevertheless, a self-adaptive methodology can be implemented
by constructing a new objective function (functional to be more
precise) depending on the original objective function to optimize and
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the Cr parameter. Thus, applying the DE methodology to this new
objective function the Cr parameter will evolve to the best Cr value.

In this study, after a considerable amount of statistics, we present
a self-adaptive methodology for the DE/rand/1/bin method with the
dither variant. Also, a phenomenological justification for the Np

parameter has been proposed. This justification takes into account the
volume of the search space, the tolerance error, and the complexity of
the function to optimize. It is plausible that Np should take into
account these concepts. However, it is not clear how to develop a
quantitative dependence. Our results shows that the Shannon entropy
[16] can be used to quantify the complexity of a function in order to
have a reasonable expression for Np. Finally we present the analysis
for 10 test functions frequently used for optimization.

2. The DE/rand/1/bin method

The DE method basically has four operators1: the population
initialization operator, the mutation operator, the crossover
operator, and the selection operator. For the sake of conciseness,
we will introduce the following notation. The population initi-
alization operator will be denoted by X0ðNp;bL;bUÞ, where the
vectors bL and bU are the lower (upper) parameter limits; the
mutation operator by VðX;bL;bU ; FÞ, where X is a matrix containing
the individuals (the population) to be mutated; the crossover
operator by U X;V ;Crð Þ, where V is a matrix containing the mutated
individuals; and the selection operator by SðU;X; fobðxÞÞ, where U
is a matrix containing individuals after mutation and crossover.
The selection is made according to certain criteria determined by
the objective function fobðxÞ. In practice, and since not all the
mutated individuals will always participate (this will depend on
the Cr parameter) in the crossover process, the mutation and
crossover operations are made simultaneously. So it is convenient
to define a new operator, let us call it the muta-crossover operator,
which we will denote by UM X;bL;bU ;Cr ; Fð Þ. The specific form of
these operators can be found elsewhere in the literature, in par-
ticular in [8]. In the Appendix, we present its Fortran code.

Keeping in mind the operators just defined, and defining the
operator BðX; fobÞ, which extracts the best individual xbest (that is,
the individual for which fob is optimal) from the matrix X, a
pseudocode for the DE method is shown in Algorithm 1.

Algorithm 1. Classical DE.

X ’ X0ðNp;bL;bUÞ
While (the stopping criterion (sc) has not been met) do
U ’ UM X;bL;bU ;Cr ; Fð Þ
X ’ SðX;U; fobÞ

end while
xbest’BðX; fobÞ

For the case when the dither variant is used, the F parameter is
randomly chosen, so the only parameters will be Np and Cr.
Usually the stopping criteria are the maximum number of gen-
erations and/or an acceptable error.

3. Experimental tests for the DE/rand/1/bin method

Before presenting the self-adaptive methodology we propose,
we will show the results of some experiments where the DE/rand/
1/bin method with the dither variant is used.

3.1. Size of the population

First, let us find a plausible formula for Np. Suppose that xmin is
the point at which a function f ðxÞ has a minimum (we will talk
about a minimum but it is clear that the same discussion is also
valid for a maximum). Let V ¼ VðbL;bU Þ be the D-dimensional
volume of the search space and let Bðxmin; δÞ be a D-dimensional
sphere centered in xmin of radius δ and volume VB. Then, according
to the frequentist approach to probability, the probability to throw
in a random point x inside Bðxmin; δÞ is
Pðjxmin�xjoδÞ ¼ VB=V; ð1Þ
if we throw in Np random points (which will be the initial popu-
lation) in V, the expected number of points Ns lying in Bðxmin; δÞ is

Ns ¼Np
VB

V : ð2Þ

Let us think of δ as the maximum distance from xmin for which
the DE method can achieve a good2 success rate. Now if the
volume of the search space is increased while δ is kept fixed, we
need to increase Np in order that Ns does not become very small
(which would mean that the method could not achieve con-
vergence). Consequently, if V-1, then also Np-1. If we want
the method to have practical applications, we could demand a
divergence in Np proportional to V. Nevertheless, if we really want
the method to be a good method, a logarithmic divergence is
acceptable. From this digression, we will demand that Np be pro-
portional to the logarithm of the volume of the search space.
Taking k as the proportionality constant, we have Np ¼ k ln V. Now,
if the search space is a hypercube with side lengths xU�xL, we will
have Np ¼ kD lnðxU�xLÞ. So, for xU�xL � e, we have obtained a
phenomenological justification for the empirical values suggested
in [4,5]. Due to the fact that xU�xL can be less than or equal to 1,
we will add the constant e to the formula for Np, thus

Np ¼ kD lnðxU�xLþeÞ ð3Þ

will be the population size that we will take in our examples.
One could argue that all that is done in Eq. (3) is to replace one

parameter by another, namely Np by k. Unfortunately, the fact that
in Eq. (3) the search space is considered is not a sufficient reason
to say that we have a good expression for Np. This situation can
change if we find a way to choose k. In the next section we present
a phenomenological reasoning for obtaining this parameter.

3.2. Results of the experimental tests

The functions we studied are shown in Table 1. Each function was
optimized 10 000 times, choosing (in each optimization) a randomvalue
for Cr and for three different sizes of the population: k¼ 5;10;15. The
stopping criteria used were a maximum number of generations chosen
as gmax ¼ 2500 Np or when an acceptable error, given in the last column
of Table 1, was achieved. The value used for gmax is completely arbitrary.
We chose a relatively large value for gmax because we are interested in
studying the convergence of the method as a function of Cr. Of course, in
real-world problems, this will make the method impractical but in the
next section we propose a better value for this parameter. The calcula-
tions were made using 50 AMD Opteron processors @2.3 GHz, running
SUSE GNU/Linux and using the Intel

s

Fortran Compiler. Tables 2, 3 and 4
summarize the main results. For the cases when the method converges,
we have defined gs;minðmaxÞ as the minimum (maximum) number of
generations used to achieve the acceptable error. Also we defined gs and

1 Think of an operator as a general mapping, not the technical definition of
operator, since the space on which they act and the image space are not, in general,
the same.

2 At this point, how good is not relevant, but if the success rate is not good
enough the only thing we need to do is to take a smaller δ. Also the reader should
keep in mind the frequentist approach to probability in all the discussion.
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