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a b s t r a c t

Quadratic Knapsack Problem (QKP), an extension of the canonical simple Knapsack Problem, is NP Hard
in the stronger sense. No pseudo-polynomial time algorithm is known to exist which can solve QKP
instances. QKP has been studied intensively due to its simple structure yet challenging difficulty and
numerous applications. A few attempts have been made to solve large size instances of QKP due to its
complexity. Quantum Inspired Evolutionary Algorithm (QIEA) provides a generic framework that has
often been carefully tailored for a given problem to obtain an effective implementation. In this work, an
improved and parallelized QIEA, dubbed IQIEA-P is presented. Several additional features make it more
balanced in exploration and exploitation and thus have better applicability. Computational experiments
are presented on large QKP instances of 1000 and 2000 items. The improvements are inherently par-
allelizable and, therefore, good speedups are obtained on a multi-core machine. No parallel algorithm is
available for QKP. The solutions provided by QIEA-P are competitive with those obtained from the state of
the art algorithm.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The 0/1 Quadratic Knapsack Problem (QKP) is a generalization
of the 0/1 Knapsack Problem (KP) introduced by Gallo et al. [1].
Given n items to be filled in a knapsack where wj is the positive
integer weight of jth item, c is a positive integer knapsack capacity
and an n�n nonnegative integer matrix P¼(pij) is given, where pjj

is a profit achieved if item j is selected, and, for j4 i, pijþpji is the
additional profit achieved if both items i and j are selected.
Without loss of generality matrix P is considered symmetric such
that pij¼pji for all i and j. Hence, additional profit achieved if both
items i and j are selected is considered as pij rather than pijþpji,
for j4 i. QKP is to find a subset of items whose total weight is not
more than the knapsack capacity c such that the overall profit is
maximized. If xj is binary variable which is equal to 1 if jth item is

selected and 0 otherwise, the problem is formulated as follows.

Maximize :
Pn

i ¼ 1
Pn

j ¼ 1 pijxixj
Subject to :

Pn
j ¼ 1 wjxjrc

xjA 0;1f g; jAf1;…;ng
ð1Þ

The KP is a particular case of QKP which arises when pij¼0 for
all ia j. The Clique problem, is another particular case of QKP,
which requires checking whether, for a given integer k, a given
undirected graph G¼(V, E) contains a complete subgraph on k
nodes. The popular optimization version of Clique, called Max
Clique, calls for an induced complete subgraph with a maximum
number of nodes.

The Max Clique, can be solved using a QKP algorithm by using
binary search. Max Clique is not only NP-hard in strong sense but is
one of the hardest combinatorial optimization problems. Same
properties apply to QKP as well. Pseudo polynomial time algo-
rithms exist for KP but no such algorithm exists for QKP. QKP is
thus considered much more difficult than the simple KP [2,3].

QKP is thus a challenging problem. Nevertheless, it has been
studied widely due to its generality and wide applicability in
several areas like facility location problems [4,5], compiler design
[6], finance [7], VLSI design [8] and weighted maximum b-clique
problem [9,10].
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Gallo et al. [1] introduced QKP and presented a method to
derive upper bounds using upper planes. Several attempts have
been made to solve QKP [3]. Some recent ones are as follows.
Pisinger et al. [11] presented an algorithm based on Lagrangian
relaxation\decomposition and aggressive reduction. It has been
shown to solve some large-sized instances with 1500 binary
variables. Le´tocart et al. [12] presented another algorithm based
on a re-optimization technique to accelerate the resolution of each
independent sequence of 0–1 linear knapsack problems induced
by the Lagrangian relaxation\decomposition. Computational
results for randomly generated instances of 600 binary variables
were presented. Large-sized benchmark instances of Pisinger et al.
[11] (1500 binary variables) and Le´tocart et al. [12] (600 binary
variables) were randomly generated and tested. They have not
been recorded by the authors [13].

Existing standard deterministic approaches like CPLEX can not
solve large instances of QKP. Several studies on heuristic and
meta-heuristic methods have also been made in the literature.
These provide satisfactory solutions for QKP within reasonable
time. Some effective heuristic and meta-heuristic methods applied
in last few decades to solve QKP are given in Table 1. From the
table, it is clear that state of the art method applied on large QKP
instances is GRASP and Tabu Search proposed recently by Yang
et al. [13]. A GRASP and tabu search method [13] solves larger
instances of size 1000 and 2000 variables. No parallel algorithm
exists which solves large size QKP.

Evolutionary Algorithms (EA), inspired by natural selection,
mimic iterative evolutionary processes with a set of solutions
encoded in a population. The population evolves based on the rule
of “survival of the fittest” [14]. The computational challenges are
faced due to problem difficulty and size, the complexity of fitness
function, and distribution characteristics of solution space, and
also on runtime efficiency of stochastic search [15]. EA's are con-
sidered inherently parallelisable [16].

QIEA refers to a subclass of EA where representation and evo-
lution is implemented based on concept of Quantum computing.
Similar to EA, QIEA exhibit the property of inherent parallelism
embedded in the evolutionary process. Some attempts have been
made in literature to utilize parallel implementations of QIEA for
simple KP [17,18].

In this work, an improved and parallelized QIEA, dubbed IQIEA-
P is presented with several additional features to make it more
balanced in exploration and exploitation and also have better
applicability to different types of combinatorial optimization pro-
blems. The improvements are inherently parallelizable and,
therefore, good speedups are obtained on a multi-core machine.
This is the first attempt to parallelise the QIEA for QKP. This
attempt in fact presents the first parallel algorithm to solve large
instances of QKP. Computational experiments are presented on
large QKP instances used by Yang et al. [13] (1000 and 2000 binary
variables) which have been obtained on request. Quality of solu-
tions provided by IQIEA-P is competitive to best known results.
Parallelization provides good speedup.

The rest of the paper is organized as follows. The basic concept
of QIEA is explained in Section 2. In Section 3 the proposed IQIEA-P
is presented. The primary differences of the strategy used to
improve QIEA in present work as compared to earlier QIEAs are
discussed. A comparison of IQIEA-P with sequential version
(IQIEA) is done in Section 4. Conclusions and future work are
discussed in Section 5.

2. Quantum inspired evolutionary algorithm (QIEA)

The QIEA introduced in [28] is population-based stochastic
evolutionary algorithm. It uses the qubit, a vector, to represent the

probabilistic state of individual. Each qubit is represented as qi ¼
αi
βi

h i
;whereαi; βi are complex numbers so that αi

2
���� is the prob-

ability of state being 0 and βi
2
���� is the probability of state being

1 such that αi
2þ βi

2 ¼ 1
�������� . For the purpose of QIEAs, αi and βi are

assumed to be real. Thus, a qubit string Q; represents a super-
position of 2n binary states and provides an extremely compact
representation of entire space.

The process of generating binary strings from the qubit
string, Q, is known as observation. To observe the qubit string Q,
a string P is generated randomly, the ith bit Pi being 1 with
probability Q2

i independent of other bits. In each of the itera-
tions, several solution strings are generated from Q by obser-
vation as given above and their fitness values are computed. The
solution with best fitness is identified. The updating process
moves the qubits of Q towards the best solution slightly such
that there is a higher probability of generation of solution
strings, which are similar to best solution, in subsequent itera-
tions. A quantum gate is utilized for this purpose so that qubits
retain their properties [28].

One such gate used in this work is the Rotation Gate, which
updates the qubits as follows:

αtþ1
i

βtþ1
i

2
4

3
5¼

cos ðΔθiÞ � sin ðΔθiÞ
sin ðΔθiÞ cos ðΔθiÞ

" #
αt
i

βt
i

" #
ð2Þ

where, αtþ1
i and βtþ1

i denote probabilities for ith qubit in (tþ1)th
iteration and Δθi is equivalent to the step size in typical iterative
algorithms in the sense that it defines the rate of movement
towards the currently best solution. The value for Δθi is chosen to
be 0.01 when observed solution is not better than best solution
found till the time of observation.

The above description outlines the basic elements of QIEA.
Observing a qubit string n times yields n different solutions
because of the probabilities involved. The fitness of these is
computed and the qubit string Q is updated towards higher
probability of producing strings similar to the one with highest
fitness. This sequence of steps continues; these ideas can be easily
generalized to work with multiple qubit strings.

QIEA of [25] (dubbed here QIEA-QKP) could give near optimal
solutions for QKP benchmark instances of size up to 200 binary
variables in reasonable time. Following improvements have been
made in the original QIEA to obtain QIEA-QKP.

� To update the qubit individuals the rotation gate used is slightly
different, which may assign different rotation angle to different
qubits depending on the bits of observed current solution and
best solution.

� A rudimentary local search technique is used which generate n
solutions in neighborhood of solutions (provided by observation
of qubit individuals) and keep the best.

� Migration Operator is removed.

A host of QIEA-based attempts have been reported in the lit-
erature that utilizes QIEAs for the solution of a wide variety of
problems [31,32]. QIEAs, of course, are not a “one-size fits all”
solution. The No Free lunch Theorem prohibits that. However, a
particular QIEA has to be designed for the problem at hand to
achieve high performance with respect to the state-of-art algo-
rithms for the problem. The primary strengths and weaknesses of
the QIEAs are briefly discussed in Table 2. Many of the weaknesses
are shared with other EAs as well.
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