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a b s t r a c t

Intensity modulated radiation therapy (IMRT) affords the potential to decrease radiation therapy asso-
ciated toxicity by creating highly conformal dose distribution to tumor. Inverse optimization of IMRT
treatment plans is often a time intensive task due to the large scale solution space, and the indubitably
complexity of the task. Furthermore, the incorporation of conflicting dose constraints in the treatment
plan, usually introduces an additional degree of intricacy. Metaheuristic algorithms have been proposed
in the past for global optimization in IMRT treatment planning. However one disadvantage of the
aforementioned methods is their extensive computational cost. One way to ameliorate their performance
deficiency is to parallelize the application. In the current study we propose a GPU-based levy-firefly
algorithm (LFA) for constrained optimization of IMRT treatment planning. The evaluation of our method
was realized for two treatment cases: a prostate and a head and neck (H&N) cancer IMRT plans. The
studies indicated an ascendable increase of the speedup factor as a function of the number of pencil
beams with a maximum of �11, whereas the performance of the algorithm was decreasing as a function
of the population of the swarm particles. In addition, from our simulation results we concluded that 200
fireflies were sufficient for the algorithm to converge in less than 80 iterations. Finally, we demonstrated
the effect of penalizing factors on constraining the maximum dose at the organs at risk (OAR) by
impeding the dose coverage of the tumor target. The impetus behind our study was to elucidate the
performance and generic attributes of the proposed algorithm, as well as the potential of its applicability
for IMRT optimization problems.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Intensity Modulated Radiation therapy (IMRT) is an advanced
means of treatment modality delivering highly modulated exter-
nal megavoltage radiation beams utilizing linear accelerators. For
many types of cancer, such as prostate and nasopharyngeal cancer
the use of IMRT allows a highly intensive treatment of the tumor
volume while limiting the radiation dose to adjacent healthy tis-
sues [1,2]. In contrast to the traditionally 3D conformal radio-
therapy (3DCRT) where the treatment is delivered with large
uniform beams, in IMRT the intensity of each beam varies within
the treatment field. This is achieved by dividing the radiation field
into a collection of pencil beams (beamlets) [3,4]. When planning a
radiation therapy case, the dose constraints are assigned to both
the target and surrounding normal structures. These dose con-
straints need not to be given in terms of the dose assigned to each
point in the body, but rather are usually phrased in terms of
aggregate functions such as maximum or minimum dose, and dose
limit for a given volume (dose-volume constraints). Then,
according to the prescribed dose objectives, numerical inverse

optimization is performed in order to determine the individual
intensities of the beamlets [5,6]. The optimized intensity maps are
then decomposed into a series of deliverable multi-leaf collimator
(MLC) patterns in the sequencing step. It is worth note that
alternative optimization methods, such as the direct aperture
optimization (DAO), have been proposed in the past where the
aperture shapes and beamlet intensities are optimized simulta-
neously. In that way all of the MLC delivery constraints of the leaf
sequencing algorithm are included in the optimization [7–9].
Traditionally, the optimization model contains a single objective
function subject to a set of hard constraints on the treatment plan.

A number of increasingly sophisticated mathematical pro-
gramming models have been proposed for the inverse treatment
planning and deconvolution process (see, e.g. Ref. [10] for a recent
overview of this topic). For instance, the well-known Newton–
Raphson algorithm is gradient-based and it works well for smooth
unimodal problems. Gradient-based algorithms have been pro-
posed in the past for optimizing single-objective problems in
radiation therapy treatment planning under volume-dose con-
straints [11–14]. However for optimization problems with
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discontinuity, a derivative-free non-gradient algorithm (i.e.
Nelder–Mead downhill simplex) is preferred. Zhu and Xing
recently proposed a total-variation based compressed sensing
technique to better balance the tradeoff between fluence mod-
ulation complexity and deliverability [15]. Kalantzis et al. [16] have
introduced an accelerated reduced order prioritized optimization
method where the IMRT optimization is performed in a pre-
sampled eigen mode space of the beamlets intensities. Romeijn
et al. [17] have followed a linear programming approach for
fluence-based IMRT optimization by approximating any convex
objective function by a piecewise linear convex function [17].
Wang et al. [18] have employed mixed integer linear programming
(MILP) to optimize beam orientations and beam weights, whereas
Xing et al. [19] have used a nonlinear programming model, the
weighted least squares for IMRT optimization.

An alternative approach to the aforementioned deterministic
methods is the Metaheuristic Algorithms (MAs) which form an
important part of contemporary global optimization algorithms.
MAs are often nature-inspired and they are now among the most
widely used algorithms for optimization problems [20]. These
algorithms have been developed by mimicking the most successful
processes in nature, including biological systems as well as phy-
sical and chemical processes. Convergence analysis of a few algo-
rithms such as the particle swarm optimization (PSO) show some
insight, but in general mathematical analysis of MAs remains
unsolved and still an ongoing active research topic [21]. The main
components of any metaheuristic algorithm are: intensification
and diversification, or exploitation and exploration. Diversification
aims to generate diverse solutions so as to explore the search
space on the global scale, while intensification focus on the search
in a local region by exploiting the information that a current
solution is found in this region [22]. MAs have been proposed in
the past for dosimetric optimization of LINAC-based IMRT treat-
ment [23–25] and robotic radiosurgery [26]. Simulated annealing
[27], PSO [28] and a hybridized genetic algorithm with an ant
colony [29] have been also applied to beam angle optimization
(BAO). Finally, other metaheuristics, such as the Bat Algorithm [30]
and Memetics [31,32] have also found applications in optimization
of IMRT and Gamma Knife treatment planning.

A global optimization stochastic algorithm which has attracted
interest from researchers is the Firelfy algorithm (FA). As a novel
literature, the FA is a metaheuristic, nature inspired optimization
algorithm developed by X. Yang [33], it is based on the idealized
behavior of the emitted light from the fireflies, in the summer sky
in the tropical temperature regions. Although the FA has many
similarities with other swarm intelligence algorithms, such as
Artificial Bee Colony (ABC), Bacterial Foraging (BFA) and Particle
Swarm Optimization (PSO), it is indeed much simpler both in
concept and implementation [34–36]. Additionally, recent devel-
opments have demonstrated the superiority of the FA in perfor-
mance compared to other metaheuristic algorithms for solving
various optimization tasks [37–40]. One of the key advantages of
the FA is the global communication among the swarming particles
(i.e. fireflies), which can provide a quick convergence by switching
from exploration to exploitation. However, if we allow the algo-
rithm to switch to exploitation stage too quickly, it may lead to
stagnation soon after the initial stage.

Due to the high dimensionality of the search space, IMRT
optimization is a computationally demanding task. One way to
ameliorate that issue is the parallelization of the optimization
algorithm. Previous studies have signified promising results
towards that direction for various computational platforms. Zie-
genhein et al. [41] have demonstrated a parallelized quasi-Newton
method on a multi-core CPU with the usage of pre-calculated dose
influence data sets. Na et al. [42] suggested a web-based radiation
therapy planning system at the Amazon Elastic Compute Cloud

(EC2). Men et al. [43] proposed a gradient projection method for
GPU-based quadratic optimization model for IMRT treatment
planning. Although all metaheuristic algorithms are simple in
terms of complexity and easy to implement, they require extensive
computational resources. That is due to the extensive iterative
calculations and random number generators required for their
execution. That issue becomes more apparent for large scale
optimization problems with thousands variables, such as the IMRT
optimization. Efforts have been made towards the parallelization
of MAs for radiation planning optimization. Nazareth et al. [44],
describes the use of a genetic algorithm that is run on a distributed
computing platform for BAO. Fiege et al. [25], describe the appli-
cation of a parallel Matlab-based multiobjective genetic algorithm
(Ferret) for IMRT optimization.

This paper suggests, for the first time to our best knowledge, an
immerging GPU-based Levy Firefly algorithm for constraint opti-
mization in radiation therapy treatment planning. The applic-
ability of the proposed method is demonstrated through two cases
of IMRT treatment planning: an early stage prostate cancer and a
head and neck (H&N) cancer case. Performance tests were con-
ducted for both cases in comparison to a sequential version of the
algorithm executed on a CPU.

2. Methods

2.1. Treatment planning preparation

The treatment planning system we have used in this investiga-
tion is the computational environment for radiotherapy research
(CERR) [45], a MATLAB

s

-based implementation of a treatment
planning suite for radiation therapy (Fig. 1).

The main advantages of CERR is the user-friendly graphical user
interface (GUI), access to dose deposition matrices, implementa-
tion of programming modules from the user and availability of the
toolboxes of MATLABs. Based on the defined target and structures
of the planning CT set, the number and orientation of 6 MV photon
beams to be used in the treatment are selected by the planner. In
conformal therapy using uniform or flat radiation fields, the
arrangement of the beams is carefully selected to spare the beam
projectiles without collisions and minimize overlap with the nor-
mal organs at risk (OARs). For IMRT plans each beam is further
subdivided into a rectilinear grid of beamlets with typical size of
0.5�0.5 cm2, but may be as small as 0.2�0.2 cm2. An optimiza-
tion algorithm is then utilized to find the beamlet intensities to
maximize the dose to the planning tumor volume (PTV) while
minimizing the dose at the OARs. Fig. 1 illustrates an example of
prostate cancer treatment plan with a single anterior beam. The
intensities of its beamlets are depicted schematically on the top
part of the beam.

In an IMRT treatment planning process, a two dimensional
photon fluence map (a set of beamlet intensities that can be
controlled individually) must be specified for each beam Fig. 2).
Then the calculated dose to each unit of volume (voxel) for all the
structures provides the feedback of optimization [46,47]. In the
context of IMRT optimization the requirements are in the form of
the prescription dose to the PTV, subject to maximum dose con-
straints at the organs at risk (OARs), and can be described as fol-
lows:

f ðxÞ ¼ arg min
P
iAT

Di �DPTVð Þ2
NT

iAPTV

s:t: max DjrDmax ;OARj 8 jAOARj ð1Þ

where NT is the number of voxels in the target structure or else
PTV, DPTV is the prescribed dose of the target structure, Dj and
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