
Sustainable Computing: Informatics and Systems 4 (2014) 241–251

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

jou rn al hom ep age: www.elsev ier .com/ locate /suscom

Reoptimization of the minimum total flow-time scheduling problem�

Guy Baram, Tami Tamir ∗

School of Computer Science, The Interdisciplinary Center, Herzliya, Israel

a r t i c l e i n f o

Article history:
Received 28 February 2014
Received in revised form 2 July 2014
Accepted 11 August 2014

Keywords:
Algorithms
Scheduling
Minimum flow-time
Transition cost
Reoptimization

a b s t r a c t

We consider reoptimization problems arising in dynamic scheduling environments, such as manufactur-
ing systems and virtual machine managers. Due to changes in the environment (out-of-order or new
resources, modified jobs’ processing requirements, etc.), the schedule needs to be modified. That is, jobs
might be migrated from their current machine to a different one. Migrations are associated with a cost
– due to relocation overhead and machine set-up times. In some systems, a migration is also associated
with job extension. The goal is to find a good modified schedule, with a low transition cost from the initial
one. We consider the objective of minimizing the total flow-time.

We present optimal algorithms for the problem of achieving an optimal solution using the minimal
possible transition cost. The algorithms and their running times depend on our assumptions on the
instance and the allowed modifications. For the modification of machines’ addition, we also present an
optimal algorithm for achieving the best possible schedule using a given limited budget for the transition.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

This work studies a reoptimization variant of the classical
scheduling problem of minimizing the total flow-time on identi-
cal machines (denoted in standard scheduling notation by P||

∑
Cj

[16]). The minimum total flow-time problem can be solved effi-
ciently by the simple greedy Shortest Processing Time algorithm
(SPT) [30,9] that assigns the jobs in nondecreasing order by their
length. This algorithm, as many other algorithms for combinato-
rial optimization problems, solves the problem from scratch, for a
single arbitrary instance without having any constraints or prefer-
ences regarding the required solution – as long as it achieves the
optimal objective value. However, many of the real-life scenarios
motivating these problems involve systems that change dynami-
cally over time. Thus, throughout the continuous operation of such
a system, it is required to compute solutions for new problem
instances, derived from previous instances.

Moreover, since the transition from one solution to another
consumes energy (used for the physical migration of the job, for
warm-up or set-up of the machines, or for activation of the new

� A preliminary version of this paper appears in the proceedings of the 1st Mediter-
ranean Conference on Algorithms (MedAlg) December 2012, Ein-Gedi, Israel.

∗ Corresponding author. Tel.: +972 99602779; fax: +972 9 9568604.
E-mail addresses: guy.baram@gmail.com (G. Baram), tami@idc.ac.il (T. Tamir).

machines), a natural goal is to have the solution for the new instance
close to the original one (under certain distance measure).

Solving a reoptimization problem involves two challenges:

1 Computing an optimal (or close to the optimal) solution for the
new instance.

2 Efficiently converting the current solution to the new one.

Each of these challenges, even when considered alone, gives rise
to many theoretical and practical questions. Obviously, combining
the two challenges is an important goal, which shows up in many
applications.

Applications: The reoptimization problem of minimizing the
total flow-time arises naturally in manufacturing systems, where
jobs might be migrated among production lines. Due to unex-
pected changes in the environment (out-of-order or new machines,
timetables of task processing, etc.), the production schedule needs
to be modified. Rescheduling tasks involves energy-loss due to relo-
cation overhead and machine set-up times. In fact, our work is
relevant to any dynamic scheduling environment, in which migra-
tions of jobs are allowed though associated with an overhead
caused due to the need to handle the modification and to absorb the
migrating jobs in their new assignment. We describe below several
less natural applications in cloud computing and networking.

With the proliferation of cloud computing, more and more appli-
cations are deployed in the data centers. Live migration is a common
process in which a running virtual machine (VM) or application

http://dx.doi.org/10.1016/j.suscom.2014.08.011
2210-5379/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.suscom.2014.08.011
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2014.08.011&domain=pdf
mailto:guy.baram@gmail.com
mailto:tami@idc.ac.il
dx.doi.org/10.1016/j.suscom.2014.08.011

242 G. Baram, T. Tamir / Sustainable Computing: Informatics and Systems 4 (2014) 241–251

moves between different physical machines without disconnect-
ing the client or application [10]. Memory, storage, and network
connectivity of the virtual machine are transferred from the orig-
inal host machine to the destination. Such migrations involve a
warm-up phase, and a memory-copy phase. In pre-copy memory
migration, the Hypervisor typically copies all the memory pages
from source to destination while the VM is still running on the
source. Alternatively, in post-copy memory migration the VM is
suspended, a minimal subset of the execution state of the VM (CPU
state, registers and, optionally, non-pageable memory) is trans-
ferred to the target, and the VM is then resumed at the target.
Live migration is performed in several VM managers such as Par-
allels Virtuozzo [25] and Xen [33]. Lot of attention, in both the
industry and the academia is given recently to the problem of min-
imizing the overhead associated with migrations (see e.g., [10,19]).
Using our notations, this refers to minimizing the transition costs
and the job-extension penalties associated with rescheduling a job.
Our work focuses in determining the best possible schedule given
these costs. Sequential processing of jobs that might be migrated
among several processors is performed also in several implementa-
tions of MapReduce (e.g., [5]). These implementations assume that
different segments of MapReduce computations can be processed
independently on remote computers [12].

Our reoptimization problem arises also in an RPC (Remote Pro-
cedure Call) service. In this environment, a cloud of servers can
provide service to a limited number of simultaneous users [8]. If
the number of requests is high, another virtual server could be tem-
porarily rented, where the cost for using it is per user. The options
are to put the RPC in a queue, thus causing latency in the service,
or renting more virtual servers, enabling faster service and paying
the additional servers’ cost. In this application, the transition cost
is not due to the migration itself, but due to the activation cost of
the additional resources.

Some of our results will be extended to consider modifications
that occur after the processing has begun, that is, at time t > 0.
For this extension (see Section 3) we distinguish between environ-
ments in which the currently processed jobs can migrate and be
restarted on different machines, and applications in which restarts
are not allowed, and a currently processed job must complete its
partial processing. The following application describes a system in
which restarts are not allowed: In a semiconductor wafers pro-
duction line, some of the coating methods involve purely physical
processes such as high temperature vacuum evaporation (physical
vapor deposition – PVD). During the process, a vacuum is created
to enable the coating. Once the elements are in a vacuum envi-
ronment, the process cannot be stopped as if the machine halts, it
will be severely damaged [22]. Assume that at time t > 0 machines
are added. Transferring jobs is costly – to capture the transition
overhead and the changes required in programming the machines
workplan. Also, the elements that are currently produced, that are
already in vacuum state, must complete their production.

1.1. Problem statement and notation

An instance of our problem consists of a set J0 of n0 jobs and a
set M0 of m0 identical machines. Denote by pj the processing time
of job j. A schedule S0 of the initial instance is given. That is, for
every job in J0, it is specified on which machine it is assigned and
on which time interval it is going to be processed. At any time, a
machine can process at most one job and a job can be processed by
at most one machine.

At time t ≥ 0, a change in the system occurs. Possible changes
include addition or removal of machines and/or jobs, as well as
modification of processing time of jobs in J0. Let J denote the mod-
ified set of jobs, and let n =

∣∣J
∣∣. Let M denote the modified set of

1

2

3

4

5

6

M1

M2

1 2

3

4

5

6M1

M2

1 2 3 4

5 6

M1

M2

(a) (b) (c)

1 2 3 4 5 6M1S0:

1 2

3+2

4 5

6+2

M1

M2

1 2 3 4 5

6+4

M1

M2

(d) (e)

Fig. 1. (Top) An initial assignment, (a) an optimal reassignment achieved with tran-
sition cost 3, (b) a possible, and (c) an optimal reassignments achieved with limited
budget B = 2, (d) an optimal reassignment assuming job-extension penalty ı = 2, and
(e) ı = 4.

machines, and let m =
∣∣M

∣∣. Our goal is to suggest a new schedule,
S, for the modified instance, with good objective value and small
transition cost form S0. Assignment of a job to a different machine
in S0 and S is denoted migration and is associated with a cost. For-
mally, we are given a price list �i,i′ ,j, such that it costs �i,i′ ,j to migrate
job j from machine i to machine i′.

Moreover, in some systems job migrations are also associated
with an extension of the job’s processing time. In this extended
model, in addition to the transition costs, we are given a job-
extension penalty list ıi,i′ ,j ≥ 0, such that the processing time of job
j is extended to pj + ıi,i′ ,j when it is migrated from machine i to
machine i′. We assume that all the involved parameters (processing
times, transition costs and extension penalties) are integers. Some
of our results assume unit transition costs, that is, for all j and i /= i′,
�i,i′ ,j = 1.1

For a given schedule, let Cj be the completion time of job j, that is,
the time when the process of j completes. In this work we consider
the problem of minimizing the sum of completion times, denote
by

∑
Cj and also known as total flow-time. In the reoptimization

problem, given S0, J and M, the goal is to find a good schedule for J
that is close to the initial schedule S0.

We consider two problems:

1 Rescheduling to an optimal schedule using the minimal possible
transition cost.

2 Given a budget B, find the best possible modified schedule that
can be achieved without exceeding the budget B.

Example 1. Assume that six jobs of lengths 1, . . ., 6 are sched-
uled on a single machine in an optimal SPT order. The total flow
time in this schedule is

∑
Cj = 56. Assume that a second machine

is added, and that all migrations have unit transition cost and
no job-extension penalties. Fig. 1(a) presents an optimal modified
schedule, for which the total flow-time is

∑
Cj = 34. Migrating jobs

appear in grey. The budget required to reach this schedule (or any
other schedule with

∑
Cj = 34) is 3. For a given budget, B = 2, it is

possible to move, for example, to the modified schedules given in
Fig. 1(b) and (c), having total flow-time 36 and 35, respectively. The
schedule (c) is optimal for this budget.

Assume further that all migrations are associated with the same
job-extension penalty, that is, for all i, i′, j, we have ıi,i′ ,j = ı. An opti-
mal solution for ı = 2 achieving

∑
Cj = 41 is given in Fig. 1(d). The

transition cost to this schedule is 2, however, even with unlim-
ited budget it is impossible to produce a schedule with lower total
flow-time. For ı = 4, only one job is migrated in the optimal solution
(that achieves

∑
Cj = 45), given in Fig. 1(e). The optimal algorithm

1 Note that the constant 1 can be replaced by any other constant.

Download English Version:

https://daneshyari.com/en/article/493934

Download Persian Version:

https://daneshyari.com/article/493934

Daneshyari.com

https://daneshyari.com/en/article/493934
https://daneshyari.com/article/493934
https://daneshyari.com

