
Sustainable Computing: Informatics and Systems 1 (2011) 314– 328

Contents lists available at SciVerse ScienceDirect

Sustainable Computing: Informatics and Systems

jo u r n al hom epage: www.elsev ier .com/ locate /suscom

Energy efficient task partitioning and real-time scheduling on heterogeneous
multiprocessor platforms with QoS requirements

Bader N. Alahmad ∗, Sathish Gopalakrishnan
University of British Columbia, Vancouver, BC, Canada V6T 1Z4

a r t i c l e i n f o

Article history:
Received 11 July 2011
Accepted 9 September 2011

Keywords:
Approximation algorithm
Energy
Scheduling
Multiprocessor
Real-time
Quality of service

a b s t r a c t

We address the problem of partitioning a set of independent, periodic, real-time tasks over a fixed set of
heterogeneous processors while minimizing the energy consumption of the computing platform subject
to a guaranteed quality of service requirement. This problem is NP-hard and we present a fully polynomial
time approximation scheme for this problem. The main contribution of our work is in tackling the problem
in a completely discrete, and possibly arbitrarily structured, setting. In other words, each processor has
a discrete set of speed choices. Each task has a computation time that is dependent on the processor that
is chosen to execute the task and on the speed at which that processor is operated. Further, the energy
consumption of the system is dependent on the decisions regarding task allocation and speed settings.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We consider a resource allocation problem where we are given
a set of heterogeneous processors with discrete speed settings and
a set of periodic, independent, real-time tasks. How do we partition
the tasks across the available set of processors and choose appro-
priate speed settings for those processors such that we achieve
minimum energy consumption while satisfying some specified
quality of service requirement? In this setting, the energy con-
sumed by the complete system depends on the task allocation
and on the speeds of the processors. This problem is motivated
by two important issues to consider in the design of current and
future embedded systems: energy consumption and processor het-
erogeneity. Furthermore, the emphasis on a system model with
completely discrete set of choices is based on architectural con-
siderations as well as empirical evidence that suggests that such a
model is indeed the appropriate model to apply.

Energy in embedded systems and especially battery-powered
devices is a valuable resource whose expenditure needs to be kept
at minimum in order to increase the lifetime of such systems. At
the same time, tasks running on those systems should be appro-
priately serviced according to their computational and timeliness

∗ Corresponding author.
E-mail addresses: bader@ece.ubc.ca, baderalahmad84@gmail.com

(B.N. Alahmad), sathish@ece.ubc.ca (S. Gopalakrishnan).
URLs: http://blogs.ubc.ca/bader (B.N. Alahmad),

http://radical.ece.ubc.ca/sathish (S. Gopalakrishnan).

requirements. There are two major contributors to the over-
all energy consumption in a processor: (i) the dynamic power
consumption due to switching activities and (ii) the leakage
power consumption due to leakage current draw in CMOS circuits
(Jejurikar et al. [1]) The former depends on the speed at which the
processor is operating, while the latter is present whenever the pro-
cessor is on, and is a constant. In addition to the energy consumed
by the processor, the total energy consumed by the computing
systems depends on the energy consumed by other devices and
peripherals in the system (e.g., memory, I/O). This energy consump-
tion is not dependent on the processor speed. This aspect of energy
modeling is important because it allows us to capture energy con-
sumption beyond what is specific to the processing units.

Most embedded systems now constitute multiple processors
in order to increase the processing throughput. In addition, each
processor can be configured to run at a speed (frequency) from a
limited set of allowable speeds. Moreover, the processor’s operating
speed can be varied while the system is running without inter-
rupting task execution. Heterogeneous computing systems consist
of multiple processing components having different architectures
and computing capabilities, interconnected using different connec-
tivity paradigms. For example, the NomadikTM platform (Wolf [2])
includes an ARM processor, a video accelerator and an audio accel-
erator, each of which is itself a heterogeneous multiprocessor.
Such systems better meet the demand of applications with diverse
requirements, because the computational requirements of a task
might differ significantly on different processing elements, and
heterogeneous systems allow tasks to be matched to computing
elements that better serve their requirements.

2210-5379/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.suscom.2011.09.001

dx.doi.org/10.1016/j.suscom.2011.09.001
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
mailto:bader@ece.ubc.ca
mailto:baderalahmad84@gmail.com
mailto:sathish@ece.ubc.ca
dx.doi.org/10.1016/j.suscom.2011.09.001

B.N. Alahmad, S. Gopalakrishnan / Sustainable Computing: Informatics and Systems 1 (2011) 314– 328 315

In addition to energy, we view the system from a quality-of-
service perspective. In general, quality of service is a measure of the
maximum error a task might tolerate, or the minimum perceived
precision in a dual sense. Quality-of-service is almost always asso-
ciated with certain cost/precision trade-offs. For example, consider
a search engine where the back-end, having received a user query,
searches its index database for matching documents, ranks those
documents (using some ranking algorithm) and returns the top N
documents in ranked order (Baek and Chilimbi [3]). The service
provider might consider, for example, executing less cycles running
the ranking algorithm for the sake of faster response, in addition
to saving energy on the search engine servers. The consequences
of such approximation of the output of computation become rele-
vant when the QoS metric is clearly defined. We can define the QoS
loss metric as the percentage of user requests, compared to the full
fledged-service case, that either return the same top N documents
but in a different rank order or return different top N documents.
Towards the goal of practically enabling such approximations by
systematic means, Baek and Chilimbi [3] developed a programming
framework called “Green”, that allows programmers to approxi-
mate loops and expensive functions, and provides statistical QoS
guarantees.

In a heterogeneous platform the assignment of tasks to proces-
sors may impact the end-user quality of service because certain
processor types may be better suited to certain tasks. For example,
executing a graphics task on a specialized graphics processor yields
better results than performing the same operation on a general-
purpose processor. In a system with heterogeneous compute units
and multiple speed settings for each processor, a system architect
may explore the trade-off between quality of service and energy
efficiency. This is the stage of the design process that we target in
this article.

To simplify the discussion, we can think of a platform with
a fixed number of processors. We need to decide the proces-
sor type for each processor from a set of available processor
types (permitting heterogeneity in the platform), then select-
ing a particular speed for a processor and finally assigning
tasks to that processor. A task would have a certain worst-case
execution time at the selected speed and each instance of a
periodic task will consume a certain amount of energy (active-
time energy) that depends on the type of processor selected
and the associated speed of the processor. Additionally when
a processor is idle it will consume some energy (idle-time
energy).

Our energy expenditure model is central to our contribution.
We relax many of the impractical assumptions underlying state-
of-the-art solutions, including the work of Yang et al. [4], which is
the closest to our efforts (see Section 7 for a discussion of related
work). In a sense, prior models assume (1) continuity of speed levels
on machines, (2) linearity of the worst case execution time (WCET)
requirements of tasks with respect to processor speed, (3) constant
worst case execution cycles (WCEC) of tasks with respect to speed
levels on processors, (4) linear interpolation of the energy expendi-
ture when calculations result in speed levels that are not available
on the processor, in case of a discrete processor speed model, and
(5) that energy expenditure on a processor depends solely on the
total utilization of the processor. These assumptions are agnostic
to the fact that different tasks exercise differential, and somewhat
arbitrary quality of execution as speed varies on a processor. A
consequence of such assumptions is that previous models cannot
capture the energy as consumed by devices other than the proces-
sor, which is due to nonlinearities of task execution requirements
and the overall energy consumption when tasks spend considerable
fraction of their time interacting with I/O devices, such as memory
and disk (I/O bound tasks). Therefore, those models are very dif-
ficult to scale to account for energy expenditure of the compute

Table 1
Basic math benchmark (single iteration).

Frequency (GHz) Average power (W) Execution time (s)

0.8 86.5 32.34
1.6 89.9 31.7
2.1 94 31.61
2.8 100.2 31.75

Table 2
Fast Fourier transform (FFT) benchmark (1000 iterations).

Frequency (GHz) Average power (W) Execution time (s)

0.8 84.3 1080.4
1.6 88.96 538.2
2.1 94.78 410.23
2.8 104.11 307.74

system as a whole (Section 2.6 provides a more elaborate discus-
sion).

To illustrate the abovementioned drawbacks in prior work and
to motivate our work with discrete settings, we performed empir-
ical studies using two applications from the MiBench embedded
applications benchmark suite by Guthaus et al. [5]: Basic Math and
Fast Fourier Transform (FFT) (with 64 random sinusoids and 65, 536
samples). We executed the former once and the latter 1000 times on
an AMD® PhenomTMII X4 925 Quad Core Processor 2.8 GHz, which
has discretely variable speeds in the set {800 MHz, 1.6 GHz, 2.1 GHz,
2.8 GHz} per core, and then measured the execution time as well
as the energy consumption of each application at each speed step.
The Basic Math benchmark includes some I/O operations and we
found that speed scaling does not result in corresponding changes
in execution time (Table 1). For this benchmark, we also found
that energy consumption increases with increases in speed. For
the FFT benchmark, which does not include the same amount of
I/O as the Basic Math benchmark, execution time decreased as we
would expect with an increase in processor speed and it is energy-
efficient to run this application at a higher speed (Table 2). Our
observations highlight the fact that variations in execution time
and energy consumption are different for different applications.
These variations are not easily captured by closed-form functions
and require discrete modeling.

We present a system and task model (Section 2) that captures
system implementations better than earlier models. We focus on
determining static speed settings for processors and identifying a
mapping between tasks and processors such that the energy expen-
diture of the system is minimized and the timeliness requirements
of tasks respected. In addition, the task allocation scheme should
guarantee that the overall QoS satisfies a specified requirement
(Section 3).

Due to the practical needs of discrete and arbitrarily structured
settings, our solution is combinatorial, and our algorithm employs
a blend of matching and enumeration techniques, with dynamic
programming being the general algorithmic tool. In summary, our
contributions are

1. New model for energy expenditure that alleviates previous
impractical assumptions.

2. An FPTAS for the (NP-hard in the ordinary sense) problem of
allocating tasks on unrelated parallel machines (heterogeneous
platform), where the number of machines is fixed, and the goal
is to find an assignment of tasks to service classes and simulta-
neously build a platform from an assortment of given machine
types, and then assign tasks (as they are equipped with ser-
vice classes) to the machines comprising the platform such that
the platform expends as minimum energy as possible while the

Download English Version:

https://daneshyari.com/en/article/493957

Download Persian Version:

https://daneshyari.com/article/493957

Daneshyari.com

https://daneshyari.com/en/article/493957
https://daneshyari.com/article/493957
https://daneshyari.com

