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Differential Evolution (DE) is arguably one of the most powerful and versatile evolutionary optimizers for
the continuous parameter spaces in recent times. Almost 5 years have passed since the first compre-
hensive survey article was published on DE by Das and Suganthan in 2011. Several developments have
been reported on various aspects of the algorithm in these 5 years and the research on and with DE have
now reached an impressive state. Considering the huge progress of research with DE and its applications
in diverse domains of science and technology, we find that it is a high time to provide a critical review of
the latest literatures published and also to point out some important future avenues of research. The
purpose of this paper is to summarize and organize the information on these current developments on
DE. Beginning with a comprehensive foundation of the basic DE family of algorithms, we proceed
through the recent proposals on parameter adaptation of DE, DE-based single-objective global optimi-
zers, DE adopted for various optimization scenarios including constrained, large-scale, multi-objective,
multi-modal and dynamic optimization, hybridization of DE with other optimizers, and also the multi-
faceted literature on applications of DE. The paper also presents a dozen of interesting open problems
and future research issues on DE.

© 2016 Published by Elsevier B.V.

1. Introduction

In an attempt to find the global optimum of non-linear, non-con-
vex, multi-modal and non-differentiable functions defined in the
continuous parameter space (< R?), Storn and Price proposed the
Differential Evolution (DE) [173,174] algorithm in 1995. Since then, DE
and its variants have emerged as one of the most competitive and
versatile family of the evolutionary computing algorithms and have
been successfully applied to solve numerous real world problems
from diverse domains of science and technology [134,40]. Starting
with a uniformly random set of candidate solutions sampled from the
feasible search volume, every iteration (commonly known as genera-
tion in evolutionary computing terminology) of DE operates through
the same computational steps as employed by a standard Evolu-
tionary Algorithm (EA). However, DE differs markedly from the well-
known EAs like Evolution Strategies (ESs) and Evolutionary Pro-
gramming (EP) in consideration of the fact that it mutates the base
vectors (secondary parents) with scaled difference(s) of the distinct
members from the current population. As iterations pass, these dif-
ferences tend to adapt to the natural scales of the objective landscape.
For example, if the population becomes compact in one variable but
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remains widely dispersed in another, the difference vectors sampled
from it will be smaller in the former variable, yet larger in the latter.
This automatic adaptation significantly improves the search moves of
the algorithm. This property is also known as the self-referential
mutation. In other words, while ES, EP, and some other real coded
Genetic Algorithms (GAs) require the specification or adaptation of the
absolute step size for each variable over iterations, the canonical DE
requires only the specification of a single relative scale factor F for all
variables. Unlike several other evolutionary computation techniques,
basic DE stands out to be a very simple algorithm whose imple-
mentation requires only a few lines of code in any standard pro-
gramming language. In addition, the canonical DE requires very few
control parameters (3 to be precise: the scale factor, the crossover rate
and the population size) — a feature that makes it easy to use for the
practitioners. Nonetheless, DE exhibits remarkable performance while
optimizing a wide variety of objective functions in terms of final
accuracy, computational speed, and robustness. It is interesting to note
that the variants of DE have been securing front ranks in various
competitions among EAs organized under the IEEE Congress
on Evolutionary Computation (CEC) conference series (for details,
please see http://www.ntu.edu.sg/home/epnsugan/index_files/cec-
benchmarking.htm). It is evident that no other single search paradigm
has been able to secure competitive ranking in nearly all the CEC
competitions on single-objective, constrained, dynamic, large-scale,
multi-objective, and multi-modal optimization problems.
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In order to present the flavor of the huge and multi-faceted
literature on DE, in 2010, [134] reviewed a number of DE-variants
for the single-objective optimization problems and also made an
experimental comparison of these variants on a set of standard
benchmark functions. However, the article did not address issues
like adapting DE to complex optimization environments involving
multiple and constrained objective functions, noise and uncer-
tainty in the fitness landscape, very large number of search vari-
ables, and so on. Also, it did not focus on the most recent engi-
neering applications of DE and the developments in the theoretical
analysis of DE. In this respect, the first comprehensive survey on
almost all aspects of the DE family of algorithms was published in
2011 by [40]. Since then, DE has advanced a lot due to the con-
tinuous efforts of EC researchers all over the globe. In a recent
survey by [49], the authors reviewed two aspects of the DE family
of algorithms: the self-adaptive and adaptive parameter control
strategies in DE and the hybridization of DE with other algorithms.
In this article, we present a more exhaustive account of the recent
advances in DE including its basic concepts, different structures,
and variants for solving constrained, multi-objective, dynamic, and
large-scale optimization problems as well as applications of DE
variants to practical optimization problems. In addition we present
several open research issues that call for the attention of the DE
researchers.

The rest of this paper is arranged as follows. In Section 2, the
basic concepts related to classical DE are explained along with the
original formulation of the algorithm in the real number space.
Section 3 discusses the recently developed parameter adaptation
and control schemes for DE. Section 4 provides an overview of
several prominent variants of the DE algorithm for the single-
objective global numerical optimization. Section 5 provides an
extensive survey on the applications of DE to the constrained,
multi-objective, multi-modal, combinatorial, and dynamic opti-
mization problems. Hybrid DE algorithms have been reviewed in
Section 6. An overview on the recent theoretical studies of DE has
been presented in Section 7. Section 8 provides an account of the
recently developed parallel and distributed DE schemes. Section 9
highlights the recent and prominent engineering applications of
DE. Section 10 discusses some interesting future research issues
related to DE. Finally, the paper is concluded in Section 11.

2. The canonical DE algorithm

The initial iteration of a standard DE algorithm consists of four
basic steps - initialization, mutation, recombination or crossover,
and selection, of which, only the last three steps are repeated into
the subsequent DE iterations. The iterations continue till a termi-
nation criterion (such as exhaustion of maximum functional eva-
luations) is satisfied.

2.1. Initialization of the decision variable vectors

DE searches for a global optimum point in a d-dimensional real
decision variable space Q < R It begins with a randomly initiated
population of Np d-dimensional real-valued decision vectors. Each
vector, also known as genome/chromosome, forms a candidate solution
to the multi-dimensional optimization problem. We shall denote
subsequent iterations in DE by t=0, 1, ..., tmax. Since the parameter
vectors are likely to be changed over different iterations, we may
adopt the following notation for representing the ith vector of the
population at the current iteration:

X = (%10, %20, ..., x,4®). 1)

For each decision variable of the problem, there may be a cer-
tain range within which the value of the decision variable should

be restricted, often because decision variables are related to phy-
sical components or measures that have natural bounds (for
example if one decision variable is a length or mass, we would
want it not to be negative). The initial population (at t = 0) should
cover this range as much as possible by uniformly randomizing
individuals within the search space constrained by the prescribed
minimum and maximum bounds: Xpin = (Xmin1,Xmin.2, ---» Xmind)
and Xmax = (Xmax 1, Xmax.2, ---» Xmaxd)- Hence, we may initialize the
jth component of the ith decision vector as

xij(o) = Xmin,i + randij[oy 1] (Xmax,j _Xminj)s (2)

where rand;;[0, 1] is a uniformly distributed random number lying
between 0 and 1 (actually 0 <rand;;[0,1] < 1) and is instantiated
independently for each component of the i-th vector.

2.2. Mutation with difference vectors

After initialization, DE creates a donor/mutant vector v;© cor-
responding to each population member or target vector x;© in the
current iteration through mutation. Five most frequently referred
mutation strategies are listed below:

“DE/rand/1":v;) = x, i) +F (szi‘“ *st"(t)) . (3a)
“DE/best/17:v;® = Xpe;® + F(xR]fm - sz.-“)) . (3b)

“DE/current—to —best/1”:v;® = X; ¥+ F (Xpes:® —x;©)

+F(xR],v‘”—xR2.“>). (30

“DE/best/2":Vi(" = Xpest 4 F (Xp 1 © X i) +F (X O =Xy ).
(3d)

“DE/rand/2":v;" = x ;¥ +F<xR2,‘” _XR;(”) +F<XR41(U - 5,‘”>.
(3e)

The indices R;',R,\,R;',Rs' and Rs' are mutually exclusive inte-
gers randomly chosen from the range [1, Np], and all are different
from the base index i. These indices are randomly generated anew
for each donor vector. The scaling factor F is a positive control
parameter for scaling the difference vectors. Xp.? is the best
individual vector with the best fitness (i.e. with the lowest objec-
tive function value for a minimization problem) in the population
at iteration t. The general convention used for naming the various
mutation strategies is DE/x/y/z, where DE stands for Differential
Evolution, x represents a string denoting the vector to be per-
turbed and y is the number of difference vectors considered for
perturbation of x. z stands for the type of crossover being used
(exp: exponential; bin: binomial). Note that in the DE/current-to-
best/1 scheme the vector which is being perturbed with the scaled
difference of the two other population members is basically a
convex combination of the current target vector and the best
population member for F < 1. This means here the base vector for
mutation denotes a point on the line joining the target vector and
the best population member and it is an arithmetic recombination
between x;Pand X.?. Thus, the resulting donor vector can be
thought of as a mutated recombinant.

2.3. Crossover

Through crossover, the donor vector mixes its components with
the target vector x;©’ to form the trial/offspring vector u;® = (u;1®,
u;2®,...,u;4®). The DE family of algorithms commonly uses two
crossover methods-exponential (or two-point modulo) and binomial
(or uniform) [40]. We here elaborate the binomial and the exponential
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