
Regular Paper

A distributed neuro-genetic programming tool

Marco Russo
Department of Physics and Astronomy, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy

a r t i c l e i n f o

Article history:
Received 12 December 2014
Received in revised form
10 June 2015
Accepted 30 October 2015
Available online 23 November 2015

Keywords:
Genetic programming
Neural networks
Distributed computing
Parallel programming

a b s t r a c t

This paper describes the performance of the Brain Project, a distributed software tool for the formal
modeling of numerical data using a hybrid neural-genetic programming technique. One of the most
interesting characteristics of the Brain Project is its distributed implementation. Unlike many other
parallel and/or distributed solutions the only requirement of the Brain Project is that the collaborating
personal computers must be 64-bit Linux machines connected to Internet via the transmission control
protocol/internet protocol. The performance of the Brain Project is clearly enhanced with the very simple
parallelization scheme illustrated in the paper. Although the Brain Project presents many innovative
solutions for the genetic programming research, this paper focuses mainly on its behavior in the dis-
tributed environment.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Evolutionary Computing (EC), Neural Networks (NNs), and
Fuzzy Logic are well-known techniques that are frequently used
for Multi-Input–Multi-Output (MIMO) system modeling. These
techniques often require a learning phase where the input data set
is presented with the aim of identifying the parameters of the final
model. This phase is typically very intensive, so, to reduce the
learning time, hardware solutions and/or parallel/distributed ones
can sometimes be adopted [13,15,18,23,14,12].

Genetic Programming (GP) falls within the EC field [17]. One
particular GP line of research foresees the evolution of tree
structures that represent formal mathematical expressions. The
Brain Project (BP) is just a hybrid Neuro-GP where we have tree
structures for the MIMO modeling of experimental data.1 Of
course this kind of GP can also be used in many other domains, for
example, for the numerical approximation of formulae [27].

EC is well suited to be parallelized and/or implemented in a
distributed environment. Some works report superlinear speedups
[23,2,5]. This result is reached, because the speedup is evaluated
starting from a unique population In this case, once again in 1943,
Wright [25] demonstrated that the problem is resolved more
quickly in terms of total computational effort when rearranged on
several multiple semi-isolated subpopulations. We can say that the
difference between a single population of individuals and the same

number of individuals divided into a number of subpopulations
maintains the probability of premature convergence and/or super-
individual hegemony. In the case of very difficult problems, when
we have single population it is quite easy that the population
reaches a premature convergence. In the case of multiple sub-
populations, the probability that all the subpopulations simulta-
neously reach a premature convergence with practically all the
equal individuals is almost unrealistic. So if a low probability of
migration is permitted, one population that has blocked its evolu-
tion can begin to improve the individuals again when other differ-
ent individuals are injected from another subpopulation. This is also
confirmed by previous studies [20] where it was demonstrated that
migration in the island is an essential model.

Other studies analyze not the speedup reachable comparing
the computational effort of only one population and those
obtained with many subpopulations, but what happens when,
given a number of subpopulations, we increase their number.
Unfortunately the results regard either simplified math models or
simpler realizations than the BP [19]. The speedup reached in
these cases is almost linear only for a small number of islands.

Further studies with more complex implementations [13] do
not reach linear speedup.

In this paper despite the complexity of the BP, we have ana-
lyzed its behavior with a number of islands that increases up to
160 divided onto up to 5 PCs.

We started to develop the BP in 2008. The current version is
number 7.227 and consists of about 15,000 C code lines. It is
composed of a set of highly optimised, object-oriented modules
for vector processing. Its internal data structures were designed

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

http://dx.doi.org/10.1016/j.swevo.2015.10.009
2210-6502/& 2015 Elsevier B.V. All rights reserved.

E-mail address: marco.russo@ct.infn.it
URL: http://superpippo.ct.infn.it/�marco
1 If you have any data to model formally and you wish to share it for research

purposes, do not hesitate to get in touch with us.

Swarm and Evolutionary Computation 27 (2016) 145–155

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2015.10.009
http://dx.doi.org/10.1016/j.swevo.2015.10.009
http://dx.doi.org/10.1016/j.swevo.2015.10.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.10.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.10.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.10.009&domain=pdf
mailto:marco.russo@ct.infn.it
http://superpippo.ct.infn.it/~marco
http://superpippo.ct.infn.it/~marco
http://dx.doi.org/10.1016/j.swevo.2015.10.009


considering CPUs as Single-Instruction–Multiple-Data (SIMD)
processors.

At present, we are using the BP project into two different fields.
The former [24] regards short-term solar plant power forecasting
without the use of meteorological forecasts or cloud inspection.
This work has been founded by “Enel Ingegneria e Ricerca S.p.A”
and deals with systems having up to 74-inputs–4-outputs, about
20 thousand patterns and a function complexity of several hun-
dreds nodes. The latter regards the implementation of the nuclear
matter equation of state, which is the main ingredient for the
study of the neutron star equilibrium configuration. Special
attention must be paid when strange baryonic matter is included
[8]. In this case we are dealing with 4-input–1-output systems,
roughly 1 thousand learning patterns and a function complexity in
the order of several hundred nodes.

One of the most salient features of the BP is its distributed
implementation. As regards this aspect the only requirement is the
Transmission Control Protocol/Internet Protocol (TCP/IP). Neither
the Message Passing Interface nor the Parallel Virtual Machine nor
any other overhead is needed [23,4]. A computer with a 64-bit
Linux operating system connected to the Internet is also necessary,
even if does not have a public IP.

The parallelization architecture of the BP follows a Master–
Slave scheme [12]. Essentially, each time we have some data to
model (we call this a Learning Task (LT)), we run one instance of
the master software on the Personal Computer (PC) master (that
has a public IP address). After a few seconds, all the active software
slaves, that are in sleep mode on all the PC hosts collaborating
with our research, wake up and start to work on the LT. When the
LT finishes all the slaves return to sleep. Even if not described in
detail in this paper the BP is able to handle multiple LTs.

Here we will show that the solutions behind our approach
permit very complex modeling-problems to be dealt with. But the
primary result obtained in these cases is that we can use many
hosts thus reducing the learning time significantly. More precisely
we can say that when we increase the complexity of the LT we can
use more hosts and attain a computation time that reduces line-
arly with the total computation power we have at our disposal. In
other words, we can reach ideal speedups if we have enough
complex problems, taking into account the total computation
power of all the available hosts. Even if in this paper we will show
our results using only five hosts, we have tested the BP using
several tens of hosts kindly offered by the no-profit research
consortium COMETA [1] that performs research in the field of High
Performance Computing. Our software slaves are able to run on
any 64-bit Linux system and are able to adapt their CPU and RAM
requirements dynamically to the actual available load and the
memory subsystem. For this reason in this paper, even if we have
many PCs at our disposal, we decided to use only the five equal,
most powerful PCs to run our software slaves.

After a brief illustration of the way BP was developed, this work
makes an in-depth analysis of its behavior in the distributed
environment.

Section 2 provides a brief illustration of the software and
hardware components of the BP. Then, Section 3 clarifies some key
points regarding the genetic and neural choices adopted. After-
wards, in Section 4 an explanation is given for the learning pro-
cedure implemented. Subsequently, Section 5 reports an accurate
study of the BP performance when both the number of PCs and the
learning time were changed. Section 6 presents an interesting
comparison of speeds. Finally, the last section reports our
conclusions.

2. The main software and hardware components of the Brain
Project

2.1. The three BP software components

The BP is composed of the following one script and two
executables:

� A bash script called demone.2 Only one demone runs for each
remote PC.

� An executable named brain_server which is launched one or
more times when there are data to model. Each different
modeling experiment will be called Learning Task. We have one
brain_server for each LT running at the same time.

� Another executable named brain_client running remotely.
Many brain_clients normally run on the same PC.

To make the paper more readable we will call a running
instance of brain_client simply client. Similarly, with the term
server we will indicate a running instance of brain_server soft-
ware. One generic PC where there is a running client will be called
Client PC (CPC) or simply host, while in the case of the server we
talk of the Server PC (SPC). Obviously nothing can avoid CPC and
SPC matching for certain clients. At the moment, the SPC hos-
tname is superpippo.ct.infn.it.

Fig. 1 shows an example of all three BP software components.
In this figure we can see four CPCs where for each only one
demone and a different number of clients are running. Further-
more, there is only one SPC in which the 3 LTs, called gravity,
photovoltaic, and coulomb are running contemporarily. One server
is depicted for each LT. We underline that each client contributes
to only one LT and that on each host different LTs can run
concurrently.

2.1.1. The script demone
This is just a bash script that performs several different tasks.

� First, it discovers if there is a more recent version of itself on the
SPC. If so, it downloads and after re-executes itself.

� The script also downloads, again from the SPC, the correct client
version according to the CPC instruction set.

� After, the demone launches several instances of the client in
background, at very low priority.

� One other important task of the demone is to limit the number
of instances when an excess of host computer memory usage
occurs. The script always gives more priority to all the other CPC
running processes.

All these operations are executed continuously. So, for example,
if we compile a newer version of the client, then the demone kills,
downloads and re-executes all of them.

2.1.2. The server
The brain_server is launched when we have any new LT. For

each running server one Configuration File (CF) is foreseen. It gives
instructions for performing the LT.

Each server performs several tasks. We now briefly list some of
them.

2 If you want to collaborate as a volunteer offering your idle CPU cycles you can
download the demone and execute it in background. For example, you can first write:
wget superpippo.ct.infn.it/ marco/demone. After, you set the script execution bit:
chmod þx demone. Lastly, you execute it: nohup:=demone4=dev=null2
4=dev=null &. To kill it: pkill �9 demone.

M. Russo / Swarm and Evolutionary Computation 27 (2016) 145–155146



Download English Version:

https://daneshyari.com/en/article/494005

Download Persian Version:

https://daneshyari.com/article/494005

Daneshyari.com

https://daneshyari.com/en/article/494005
https://daneshyari.com/article/494005
https://daneshyari.com

