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We compared the equation approach and unitary approach in helping students (n = 59) learn percentage
change problems from a cognitive load perspective. The equation approach emphasized a two-part learning pro-
cess. Part 1 revised prior knowledge of percentage quantity; Part 2 integrated the percentage quantity and the
original amount in an equation for solution. Central to the unitary approach is the concept of unit percentage
(1%). The unitary approach would expect to incur high element interactivity because of the intrinsic nature of
its solution steps, and the need to search and integrate quantity and percentage in order to act as a point of ref-
erence for calculating the unit percentage. Test results and the instructional efficiencymeasure favored the equa-
tion approach. It was suggested that the equation approach reduced the intrinsic cognitive load associated with
percentage change problems via sequencing and prior knowledge.
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1. Introduction

There is evidence to indicate that instructional approaches depicted
in mathematics textbooks may cultivate shallow mathematical reason-
ing and thinking skills (Vincent & Stacey, 2008). For example, there is
little evidence of requiring students to solve geometry problems by set-
ting up an equation such as, (2×− 6)0+ 320= 700 in which they need
to build on prior knowledge of algebraic expressions, (2× − 6)0. Thus,
how can mathematics educators help middle school students under-
stand and learn percentage change problems, such as “Last semester
Nikki scored 80 marks for a mathematics test. She has improved her math-
ematics marks by 10% this semester. Find Nikki's mathematics marks for
this semester” is an important issue. How do we knowwhether a partic-
ular instruction is effective in fostering understanding and learning per-
centage change problems?

Our ability to solve a range of real-life problems (e.g., If 5 kg oranges
cost $20, what is the cost of 1 kg oranges?) relies on the efficient use of
mental computation of what is known as a ‘unitary’ concept. Unsurpris-
ingly, based on this unitary concept, the unitary approach is one of the
popular methods in mathematical problem solving (McSeveny,
Conway, & Wilkes, 2004). In contrast, mathematics textbooks rarely

advocate the equation (algebra) approach for mathematical problem
solving (e.g., McSeveny et al., 2004). The equation approach requires
students to integrate relevant information in an equation for subse-
quent generation of a solution.

Several researchers have designed mathematics instructions and
test their effectiveness by conducting randomized, controlled experi-
ments in a regular classroom with school age students (Jitendra, Star,
Rodriguez, Lindell, & Someki, 2011; Rittle-Johnson & Star, 2007). In
the current study, differing from previous inquiries, we compared the
unitary approach and equation approach that could facilitate effective
learning of percentage change problems from a cognitive load
perspective.

2. Cognitive load theory

Recent development in cognitive load theory (Sweller, 2012) has
stipulated five major components that have implications for instruc-
tional designs and pedagogical practices in mathematics education.
These are:

1. Information store principle refers to a huge long-termmemory capac-
ity to store organized information in the form of schemas that can be
handled as a single element in workingmemory. Thus, onemain aim
of instruction is to acquire schemas and store them in long-term
memory. For example, once the learner has acquired a schema for
percentage quantity (e.g., 15% × 72), the learner can retrieve the
schema from long-term memory and treat this as a single element
in working memory.
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2. Borrowing and reorganizing principle refers to the acquisition of
schemas in educational practices that rely on learning from experts
in the domain, as well as imitation from peer students. One of the
strongest empirical evidence is the worked examples effect
(Atkinson, Derry, Renkl, & Wortham, 2000; Paas & van Gog, 2006).
The worked examples effect is relevant to this article.

3. Randomness as genesis principle refers to random testing during prob-
lem solving to generate novel information. Only those problem solv-
ing moves that result in generating novel information will be
retained in long-term memory. When solving a mathematics prob-
lem, the problem solver who lacks the schemas may resort to use a
trial and error method to generate problem solving moves. Success-
ful problem solving moves that contribute towards the solution will
be stored in long-term memory as schemas.

4. Narrow limits of change principle refers to a restriction imposed on the
limitedworkingmemory to process a large amount of novel informa-
tion from external environment because it will result in too many
combinations. Processing a large number of novelmathematics prob-
lems that will result in too many combinations of solution paths
would put a strain on the limited working memory.

5. The environmental organizing and linking principle refers to the limita-
tion of working memory that will disappear when processing
schemas that can be retrieved from long-term memory. As will be
discussed later, the percentage quantity (e.g., $20 × 5%) schema re-
trieved from long-term memory allows the learners to process the
percentage change problems using fewer elements in working
memory.

The five mentioned principles of cognitive load theory feature, cen-
trally, in the operational nature of working memory and long-term
memory. The long-term memory serves as storage for a large number
of schemas, whereas the limitation of working memory (Miller, 1956)
is restricted to process novel information but not schemas that can be
retrieved from long-term memory. In view of this, how does the inter-
action between long-term memory and working memory contribute
to effective instructional design?

Interacting elements constitute element interactivity, whereby an
element is anything that requires learning (e.g., a number or a mathe-
matical concept). In recent development of cognitive load theory
(Sweller, 2012; Sweller, Ayres, & Kalyuga, 2011), element interactivity
is regarded as a common factor for both intrinsic and extraneous cogni-
tive loads. Intrinsic cognitive load is imposed by the element interactiv-
ity of the learning material, at hand. The higher the degree of element
interactivity, the more the intrinsic cognitive load. Nevertheless, intrin-
sic cognitive load varies in accord with the knowledge base of the
learners. Multiple interactive elements for a learner who has a low
level of knowledge base can be a single unit of element for another
learner who has a high level of knowledge base (Kalyuga, 2007). In es-
sence, the prior knowledge of a domain could reduce the extent to
which elements within the learning material interact, and therefore its
intrinsic cognitive load.

Extraneous cognitive load, in contrast, is imposed by the element in-
teractivity that arises from inappropriate instructional design. For ex-
ample, when solving geometry problems, a split-attention effect will
occur if the learners are required to integrate elements in the diagram
and the text from disparate sources (Tarmizi & Sweller, 1988). Germane
cognitive load, likewise, does not represent an independent source of
cognitive load; rather, it refers to cognitive resources that are directed
to learn the element interactivity and thus intrinsic cognitive load of
the learning material. Hence, overall, the total cognitive load depends
on both intrinsic and extraneous cognitive loads. Effective instructional
designs aim to minimize extraneous cognitive load and stimulate the
learners to devote their cognitive resources to deal with the intrinsic
cognitive load of the learning material. In view of this current formula-
tion of cognitive load theory, how can element interactivity influence
the design of mathematics instructions?

3. Element interactivity, understanding and working memory

In numeral identification, learning to recognize an individual num-
ber such as 2 or 5 constitutes a low element interactivity task because
learning to recognize individual numbers can be learned independently
of each other. In other words, there is limited relationship between in-
dividual numbers (i.e., in this case 2 and 5, individually). In contrast,
however, learning to make sense of $70 × 20%= $14 requires simulta-
neous assimilation of several interacting elements – for example: $70,
20%, $14 and their relationship (e.g., multiplicative relation between
$70 and 20%). Each element (e.g., $70) has no meaning when consid-
ered in isolation.What is notable is that it is the understanding of the re-
lationship between the elements, rather than the individual elements
that poses challenges and deters effective learning.

Lowelement interactivity tasks (i.e., simple task)where elements do
not interact, imposes low intrinsic cognitive load. High element interac-
tivity tasks (i.e., complex task)where understanding of the task requires
assimilation of multiple interacting elements, in contrast, imposes high
intrinsic cognitive load (Carlson, Chandler, & Sweller, 2003; Leahy &
Sweller, 2008; Sweller & Chandler, 1994). The intrinsic cognitive load
that is associated with a complex task cannot be altered, but the task it-
self can be altered to a different task through instructional manipula-
tions. For example, as will be discussed later, by sequencing the
percentage change problems to a two-part learning process, the intrin-
sic nature of the task can be reduced and thus schema acquisition facil-
itated. Furthermore, the intrinsic cognitive load depends not only on the
complexity of the task, but also the knowledge base of the learners. As
learners gain expertise in the domain of functioning, they can treatmul-
tiple elements as a single element (i.e., chunk), and thus reducing the in-
trinsic cognitive load.

4. Learning complex tasks

One strategy that learners could utilize to learn complex tasks in-
volving high element interactivity is to sequence the learning process
into two separate parts. The isolated element effect is a clear example
(Pollock, Chandler, & Sweller, 2002), whereby learners learn individual
elements, initially, without having to learn the relationship(s) between
them. Learners are required to learn isolated elements in the initial
phase of instruction. The relationship between isolated elements is pre-
sented to the learners in the subsequent phase of instruction. According
to Pollock et al., 2002 this manner of presenting a complex task reduces
the intrinsic nature of the task, and thus allows schema acquisition to
occur more readily.

In mathematics learning, presenting an algebraic expression such as
−3(4×− 3)+ 8(3− 2×) in isolated steps, serially, in which each step
only focuses on the multiplication of two entities (e.g.,−3 × 4×), is su-
perior to the presentation of the algebraic expression in an integrated
format (e.g., −3 × 4× − 3 × −3 + 8 × 3 + 8 × −2×), where the
two brackets are being expanded simultaneously (Ayres, 2006). Ayres
argued that the part-tasks approach reduces the intrinsic nature of the
algebraic expression, as working memory only deals with individual
steps, one at a time in the initial phase of learning, and then the relation-
ship(s) between the steps at a later stage. In other words, the part-tasks
approach enables a learner to acquire individual schemas that corre-
spond to individual steps, gradually. This process of correspondence,
in turn, results in the construction of a schema for the algebraic expres-
sion. The work of Gerjets, Scheiter, and Catrambone (2004) also sup-
ports the benefit of breaking down the task into separate modules,
sequentially, in order to facilitate schema acquisition for probability
problems. Again, the instructional manipulation does not change the in-
trinsic cognitive load of the task itself, but it does change the task to a
different task that comprises separate modules. Each module, in this
case, is associated with low element interactivity, and thus reducing
working memory load that is required to learn the task in sequential
modules.
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