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ABSTRACT

The article deals with principles and utilization possibilities of cellular automata and differential
evolution within task resolution and simulation of an epidemic process. The modelling of the spread
of epidemics is one of the most widespread and commonly used areas of a modelling of complex
systems. The origins of such complexity can be investigated through mathematical models termed
‘cellular automata’. Cellular automata consist of many identical components, each simple, but together
capable of complex behaviour. They are analysed both as discrete dynamical systems, and as
information-processing systems. Cellular Automata (CA) are well known computational substrates for
studying emergent collective behaviour, complexity, randomness and interaction between order and
chaotic systems. For the purpose of the article, cellular automata and differential evolution are
recognized as an intuitive modelling paradigm for complex systems. The proposed cellular automata
supports to find rules of the transition function that represents the model of a studied epidemic. Search
for models a studied epidemic belongs to inverse problems whose solution lies in a finding of local rules
guaranteeing a desired global behaviour. The epidemic models have the control parameters and their
setting significantly influences the behaviour of the models. One way how to get proper values of the
control parameters is use evolutionary algorithms, especially differential evolution (DE). Simulations of
illness lasting from one to ten days were performed using both described approaches. The aim of the
paper is to show a course of simulations for different rules of the transition function and how to find a
suitable model of a studied epidemic in the case of inverse problems using a sufficient amount of local
rules of a transition function.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cellular Automata (CA) are well known computational sub-
strates for studying emergent collective behaviour, complexity,
randomness and interaction between order and chaotic systems.
Cellular Automata are used for the simulation of complex phe-
nomena, such as growth, reproduction, evolution or chemical
reactions, etc. A complex organized behaviour is produced by
interaction of many elements forming the monitored system. An
understanding the processes, which form a natural complexity,
allows us to understand the complexity in general and then these
knowledge will be used for a proposal of software, which allows
better understanding the behaviour of complex systems.

The first, who dealt with the issue of reproduction of a natural
processes’ complexity on a computer, was a Hungarian mathema-
tician John von Neumann, who created the foundation for the
study of cellular automata, which presents a natural way of
complex systems’ modelling on a computer [24]. In 1970 Conway
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created the game Life [1,7], where he designed a two-dimensional
CA with such rules to avoid the formation of structures that
quickly disappear or grow freely. In the seventies of last century
the first deterministic two-dimensional CA was created to study
statistical properties of a gas, the so-called HPP gas model [8]. This
way has opened the possibility for simulation of motion, fluids, or
granular substances using CA. In 1986, two-dimensional stochastic
model FHP was proposed to study the movement of fluids [8],
which reflects a realistic fluid dynamics. It was an undeniable
proof of the ability of cellular automata to model real physical
problems. In the 1980 s Stephen Wolfram studied cellular auto-
mata and dealt with the relationship between local rules and
global behaviour. He studied the simplest one-dimensional auto-
mata and he divided CA according to long-term behaviour into
four classes [24]. Stephan Wolfram is also the author of SW
Mathematica, which allows a creation of simulation models using
cellular automata [28].

The main advantages of simulation using CA include the ability
to solve highly complex problems that are unsolvable by conven-
tional analytical methods. CA also allows us the better under-
standing of modelled systems. The aim of this article is to use the
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proposed application to perform simulations of the spread of
epidemics for different transition functions of CA, as well as the
influence of changes in rules of the transition functions on the
course of simulations is monitored. Results from our experimental
study are compared with real data from 1978 flu epidemic.

Concerning differential evolution (DE), it has desired properties
necessary to handle complex problems with interdependencies
between input parameters, without the implementation complex-
ity and computation cost [26]. Evolutionary operators used in
differential evolution algorithm are very much suitable to tackle
complex problems such as a complex system modelling, especially
modelling the spread of epidemics. The epidemic models have the
control parameters and their setting significantly influences the
behaviour of the models. One way how to get proper values of the
control parameters is use evolutionary algorithms, especially
differential evolution [23].

2. Cellular automata

Cellular Automata (CA) are discrete, abstract computational
systems that have proved useful both as general models of
complexity and as more specific representations of non-linear
dynamics in a variety of scientific fields [3]. First, CA are (typically)
spatially and temporally discrete: they are composed of a finite or
denumerable set of homogeneous, simple units, the atoms or cells.
At each time unit, cells instantiate one of a finite set of states. They
evolve in parallel at discrete time steps, following state update
functions or dynamical transition rules: the update of a cell state
obtains by taking into account the states of cells in its local
neighbourhood (there are, therefore, no actions at a distance).
Second, CA are abstract, as they can be specified in purely
mathematical terms and implemented in physical structures.
Third, CA are computational systems: they can compute functions
and solve algorithmic problems. Despite functioning in a different
way from traditional, Turing machine-like devices, CA with sui-
table rules can emulate a universal Turing machine, and therefore
compute, given Turing’s Thesis, anything computable.

All CA can be generated through tuning the four parameters
that define their structure [22]:

a) Discrete n-dimensional lattice of cells: We can have one-dimen-
sional, two-dimensional, ..., n-dimensional CA. The atomic
components of the lattice can be differently shaped: for
example, a 2D lattice can be composed of triangles, squares,
or hexagons. Usually homogeneity is assumed: all cells are
qualitatively identical.

b) Discrete states: At each discrete time step, each cell is in one
and only one state, ¢ € X, X being a set of states having finite
cardinality IX1=k.

c) Local interactions: Each cell’s behaviour depends only on what

happens within its local neighbourhood of cells (which may or

may not include the cell itself). Lattices with the same basic
topology may have different definitions of neighbourhood (the

Moore neighbourhood, von Neumann neighbourhood, hexago-

nal neighbourhood, triangle neighbourhood etc.)

Discrete dynamics: At each time step, each cell updates its

current state according to a deterministic transition function ¢:

3" X mapping neighbourhood configurations (n-tuples of

states of X) to X. It is also usually, though not necessarily,

assumed that (i) the update is synchronous, and (ii) ¢ takes as
input at time step t the neighbourhood states at the immedi-

ately previous time step t—1.
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The simplest class of one-dimensional cellular automata. Elemen-
tary cellular automata have two possible values for each cell (0 or
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Fig. 1. A table specifying the state a given cell based on the value of the cell to its
left, the value the cell itself, and the value of the cell to its right.

1), and rules that depend only on nearest neighbour values. As a
result, the evolution of an elementary cellular automaton can
completely be described by a table from Fig. 1 specifying the state
a given cell will have in the next generation based on the value of
the cell to its left, the value the cell itself, and the value of the cell
to its right. Since there are 8 (23) possible binary states for the
three cells neighbouring a given cell, there are a total of 256 (28)
elementary cellular automata, each of which can be indexed with
an 8-bit binary number [28]. Starting with random initial condi-
tions, Wolfram went on to observe the behaviour of each rule in
many simulations. As a result, he was able to classify the
qualitative behaviour of each rule in one of four distinct classes,
which are the following:

® (Classl—rules leading to homogenous states, all cells stably
ending up with the same value.

® (Class2—rules leading to stable structures or simple periodic
patterns.

® (Class3—rules
behaviour.

® (Class4—rules leading to complex patterns and structures pro-
pagating locally in the lattice.

leading to seemingly chaotic, non-periodic

CA are systems showing properties of self-organization, but
their ability to distinguish status of environments, which are
important for its maintenance, is low. As an example, we can
mention a growth of solid crystals or the aforesaid oscillating
chemical reactions. These systems are either almost unresponsive
to changes in the environment due to their regular and fixed
internal structure (crystals), or they are highly sensitive to envir-
onmental changes (e.g. amount of supplied energy) because their
internal structure shows a high degree of disorder (oscillating
reaction). Differences between these two extreme examples may
be illustrated by appropriate mathematical models of self-
organization [19]. One of the most popular, easiest as well as the
most illustrative models are primarily cellular automata.

The utilization of CA consists in their displaying complex
emergent behaviour, starting from simple atoms deterministically
following simple local rules. Because of this, CA attract a growing
number of researchers willing to study pattern formation and
complexity in a pure, abstract setting. In his review of the
literature, Andrew Ilachinski [22] narrows down CA applications
to four main areas:

Cellular automata as powerful computational engines.
Cellular automata as discrete dynamical system simulators.
Cellular automata as conceptual vehicles for studying pattern
formation and complexity.

Cellular automata as original models of fundamental physics.

Concerning cellular automata as discrete dynamical system
simulators, the area comprises scientific applications of CA to the
modelling of specific problems—to mention just a few: urban
evolution [2], Ising models [9], neural networks [12], turbulence
phenomena [6] etc.
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