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a b s t r a c t

In the Derivatives financial markets, Futures portfolios are perceived to be instruments of high risk,
despite their flexibility of being used for portfolio protection (hedging) or for profitable trading
(speculating). A multi-pronged approach for an effective management of the risks involved includes
employing strategies such as, diversification between dissimilar markets, decision to go long or short on
assets that make up the portfolio and risk tolerance or risk budgeting concerned with how risk is
distributed across asset classes constituting the portfolio with all of these governed by investors’
preferences and capital budgets. However, the inclusion of such objectives and constraints turns the
problem model complex for direct solving using analytical methods, inducing the need to look for
metaheuristic solutions.

In this paper, we present a metaheuristic solution to such a complex futures portfolio optimization
problem, which strives to obtain an optimal well-diversified futures portfolio combining several asset
classes such as equity indices, bonds and currencies, subject to the constraints of risk and capital budgets
imposed on each of the asset classes, besides bounding constraints. The Herfindahl index function has
been adopted to measure diversification of the long-short portfolio. In the absence of related work and
considering the complexity of the problem that transforms it into a non linear multi-objective
constrained optimization problem model, two metaheuristic strategies viz., multi-objective evolution
strategy and multi-objective differential evolution, chosen from two different genres of evolutionary
computation, have been employed to solve the complex problem and compare the results. Extensive
simulations including performance analyses, convergence testing and back testing portfolio reliabilities
have been undertaken to analyze the robustness of the optimization strategies.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Futures contracts are key players in the Derivative financial
markets, which include a variety of other financial contracts such
as Options, Forwards and Swaps, and variations of these [1]. A
futures contract is an agreement to buy or sell a specified amount
of commodity or a non-commodity such as index, currency, bond
or other asset of value, for a certain price at a certain time in the
future. The contract sets the value and is usually referred to by its
delivery month which is set ahead of time. The price is known as
the futures price. The futures contracts can be bought or sold only
on the futures exchange. Anyone who buys a futures contract
directly or through one of the pooled investment alternatives is
said to take up a long position and anyone who sells a futures

contract by closing the position with a closing purchase transaction
is said to take up a short position. Thus one of the crucial elements
of the futures contracts is the decision on which positions need to
be taken long or short which defines and distinguishes risk as well.
Thus, futures markets deal with risk and risk transfer where
investors (hedgers) hedge positions against risk by transferring
the same to investors (speculators) who are willing to accept those
risks in exchange for the profit potential. The profits and losses of a
futures contract depend on the daily movements of the market for
that contract and are calculated on a daily basis.

However, earning profits through futures trading is fraught
with risks and therefore a perspective on futures requires a
complete appreciation of the risks involved [2]. Diversification
and the process of allocation which involves investments in
different markets is a popular strategy to mitigate risk. With
different securities performing differently at any point in time,
the objective of diversification is to minimize financial losses by
constructing a portfolio of mixed asset classes and types so that
the decline of one or more assets in the portfolio does not severely
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impact the portfolio. Asset allocation based on Capital budgeting,
which involves how much money is to be invested on different
assets comprising the portfolio is natural. But considering the risks
involved, it is more than essential to adopt asset allocation based
on Risk budgeting too, which focuses on how risk is distributed
over assets or asset classes throughout the portfolio. In this aspect,
a clear understanding of the investors’ risk profiles which involves
an analysis of the investors’ risk levels as well as personal risk
tolerance (risk budgets) and investing objectives, are also essential
to safely manage risk. Since both long future positions and short
future positions are unlimited risk- unlimited returns positions that
can be entered into, by futures speculators to profit from the rise
or fall of the underlying positions respectively, the long-short mix
of the futures portfolio also plays a dominant role in managing
one’s risk. An investor may exercise a choice for a fully invested
portfolio where virtually all funds stay invested over the portfolio
with no cash reserve in the account or even more than fully
invested when he or she may margin or borrow funds for invest-
ment. An investor who is fully invested or more than fully invested
runs the risk of severe financial loss if the markets do not perform
as expected. All of these strategies needless to say, are subject to
the investors’ preferences and capital budget requirements over
different assets/asset classes comprising the portfolio.

The objective of this work, therefore is to obtain an optimal
futures portfolio that is well-diversified, fully invested, and accom-
modates a long-short position mix, with risk budgets and asset
class constraints imposed on the portfolio positions to reflect the
risk profiles and investment objectives of the investor. Viewed
under the Markowitz framework [3] where variance of a portfolio
models risk, the main focus of the work is on obtaining a minimum
variance futures portfolio or a minimum risk futures portfolio,
subject to the constraints imposed and hence the work precludes
inclusion of futures returns in its present exploration.

An optimal futures portfolio thus strives to enlighten the
investor on what proportion of funds should be invested on what
asset—termed weights in portfolio management parlance. The
decision variables of the futures portfolio optimization problem
are thus the weights ðW1;W2;W3:::WNÞ, where N is the number of
assets in the portfolio. In the case of long positions the weights are
deemed positive and in the case of short positions they are
deemed negative. The objective of the optimization problem is
to maximize diversification which notionally serves to minimize
risk. Entropy based diversification has been a popular measure to
quantify risk, in a long-only portfolio though. But Woerheide and
Persson [4] recommended Herfindahl index as the best measure of
diversification for an unevenly distributed portfolio, out beating
even entropy based diversification. Therefore this work chose to
employ Herfindahl index based diversification. However, the
Herfindahl index by and large, has been applied only over long-
only portfolios (portfolios with only long positions, that is positive
weights) in the literature. In this work considering the long-short
mix of the portfolio (that is, positive and negative weights) – a
strategy that had to be executed to mitigate risk – a revised
definition of Herfindahl index has been proposed and applied for
maximizing diversification. The investor preference for a fully
invested portfolio represents itself as a constraint where sum of
the weights equals 1. The long-short portfolio mix is represented
as a bounding constraint where each weight of the portfolio falls
within a range [�a, b]. The capital budget requirements of the
investor are represented as constraints where the sum total of the
weights of the assets in each of the asset classes (for example,
equity indices, bonds and currencies—in this work) lie between
bounds specified by the investor. Finally the risk budgets specified
as x% of the portfolio risk for each of the asset classes, is
represented as a non-linear constraint involving the variance–
covariance matrix of the assets in the asset classes concerned.

To tackle the complexity of the problem objectives and con-
straints, the mathematical formulation of the problem model
transforms itself into a non-linear, multi-objective, constrained
portfolio optimization problem, which renders it difficult for direct
solving using analytical methods. Multi-objective evolutionary
algorithms have presented themselves as ideal candidates to
tackle such complex computationally expensive optimization
problems due to their inherent nature of managing multiple
conflicting objectives, delivery of Pareto optimal solutions in a
single run and malleability to accommodate extensions and
refinements of their algorithmic frameworks and/or evolutionary
operators, to facilitate efficient problem solving [5]. Hence two
metaheuristic strategies viz., multi-objective evolution strategy and
multi-objective differential evolution, both belonging to two differ-
ent genres of evolutionary computation and refined versions
themselves of their conventional counterparts to tackle multi-
objective optimization, have been employed to solve the problem
and compare the results.

A survey of literature revealed that very little work had been
reported in the area of constrained optimization for a futures
portfolio of this nature. Putzig, Becherer and Horenko [6] dis-
cussed a futures portfolio optimization problem that dealt with a
long–short portfolio for commodities with basic constraints and
which employed a numerical optimization strategy based on the
Tykhonov-type regularization for its solution. You and Daigler [7]
examined the diversification benefits of using individual futures
contracts instead of simply a commodity index. Benth and Lempa
[8] explored futures portfolio optimization from the point of view
of maximizing utility from the final wealth when investing in
futures contracts.

However, the work discussed in this paper is distinct from its
peers in that, the objectives of diversification and risk budgeting
which yield non-linear constraints and hence demanded meta-
heuristic optimization strategies for its solution, and capital
budgeting manifesting itself as asset class constraints, have been
hitherto remained unexplored in the futures market scenario. In
fact it was the absence of such counterparts against which the
results could be compared, that compelled investigation of two
metaheuristic strategies chosen from two different genres of
evolutionary computation, to ascertain the robustness and accu-
racy of the solutions to the complex constrained optimization
problem through comparison.

Section 2 discusses the mathematical formulation of the non-
linear constrained futures portfolio optimization problem. Section
3 briefly discusses the two metaheuristic strategies of evolution
strategy and differential evolution. Section 4 outlines the applica-
tion of the metaheuristic methods for the solution of the futures
portfolio optimization problem. Section 5 details the experimental
results to study the performance and analyse the robustness of the
solution strategies and Section 6 lists the conclusions of the study.

2. Mathematical formulation

Let N be the number of assets in the futures portfolio,
W¼ ðW1;W2;W3:::WNÞ the weights or the proportion of capital
to be invested in the assets and σij the covariance between the
daily returns of assets i and j.

The portfolio risk σP following Markowitz’s framework [3] is
given by

σ2P ¼ ∑
N

i ¼ 1
∑
N

j ¼ 1
WiWjσij ð1Þ

The Annualized Portfolio Risk is defined as
ffiffiffiffiffiffiffiffiffi
261

p
� σP where 261

is generally the number of trading days in a year.
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