
Regular Paper

Comparative study of system on chip based solution for floating
and fixed point differential evolution algorithm

Rangababu Peesapati, Kiran Kumar Anumandla, Shravan Kudikala, Samrat L. Sabat n

School of Physics, University of Hyderabad, Hyderabad 500046, India

a r t i c l e i n f o

Article history:
Received 22 November 2013
Received in revised form
2 May 2014
Accepted 30 June 2014
Available online 8 July 2014

Keywords:
Differential evolution
Hardware accelerator
Floating point unit
System on chip

a b s t r a c t

This paper presents performance study of scalable hardware accelerator for fixed and floating point
differential evolution (DE) algorithms in field programmable gate array (FPGA) using programmable
system on chip (PSoC) approach. The hardware intellectual property (IP) of the DE is interfaced as a Slave
Unit (SU) as well as an Auxiliary Processor Unit (APU) with the PowerPC440 processor based System on
Chip (SoC) platform on Xilinx Virtex-5 FPGA. Six numerical benchmark functions are optimized to
validate the IP and its interface to processor. From the experimental results, it is observed that (i) Both SU
and APU interfaces of fixed and float DE IPs have shown similar acceleration because of less
communication overhead. (ii) Floating point DE has higher resource utilization compared to fixed point
DE. (iii) Both interfaces of fixed and float DE SoC systems have shown similar power consumption. (iii)
Finally as a case study, an Infinite Impulse Response (IIR) based system identification task with second
and fourth order plant transfer functions is implemented on PSoC using the fixed and float DE IP cores
with fabric co-processor bus (FCB) interface using APU controller. The experimental results reveal that
the acceleration factor and resources utilization increases with the increase in problem complexity.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Evolutionary algorithms (EAs) are extensively used for solving
many diverse domains of science and real-time engineering
applications to find an optimum solution of multimodal functions
[1,2]. In the literature, many algorithms like Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Differential Evolution
(DE) are reported to solve multimodal optimization problems.
Among these, DE algorithm is popular due to its faster conver-
gence and less computation complexity; due to this it has been
successfully applied in different applications like parameter
extraction [3], image segmentation [4], feature subset selection
[5] and design of IIR filters [6,7]. In general, the evolutionary
algorithms are implemented in the embedded processors for real
time applications. Due to sequential execution nature of the
processor, it takes longer execution time than the target time to
complete a task. This can be overcome by implementing the
algorithm in field programmable gate array (FPGA), because it
supports concurrent execution. Due to this, the engineering com-
munities are attracted to implement this algorithm in hardware
[8]. EAs like GA, PSO and DE are implemented on a high end

desktop computer/processors to solve the optimization problems.
DE algorithm becomes computationally intensive with increase in
the dimension/complexity of the problem thus increases the
execution time for solving a task. This limits its real-time applica-
tions in embedded processors. So there is an increasing demand
for its hardware realization. DE algorithm has been implemented
in general purpose processors for an off-line simulation in desktop
environment [9]. In modern era, the applications like system
identification and evolvable hardware require the implementation
of evolutionary algorithms in an embedded processor. Execution
speed and resource consumption are the main performance
indicators for an embedded system that depends on the imple-
mentation strategy and the platform. Thus, the main focus of this
work is to compare different implementation strategies of DE
algorithm in a FPGA.

For high accuracy and resolution, floating point arithmetic is
preferred over fixed point arithmetic. Similarly for high bandwidth
data transfer applications Auxiliary Processor Unit (APU) interfa-
cing is preferred over Slave Unit (SU) interface. Recently the
authors have reported the performance of floating point DE
algorithm implemented in a PowerPC440 (PPC440) based system
on chip platform using Slave Unit interface [10]. The performance
of fixed point DE algorithm implemented in the same platform
using APU interface is reported in [11]. But there is no cross
comparison of performances between the fixed and floating point
DE algorithms using different interfaces. The objective of this

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

http://dx.doi.org/10.1016/j.swevo.2014.06.005
2210-6502/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: kiran.anumandla@gmail.com (K.K. Anumandla),

slssp@uohyd.ernet.in (S.L. Sabat).

Swarm and Evolutionary Computation 19 (2014) 68–81

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2014.06.005
http://dx.doi.org/10.1016/j.swevo.2014.06.005
http://dx.doi.org/10.1016/j.swevo.2014.06.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.06.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.06.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.06.005&domain=pdf
mailto:kiran.anumandla@gmail.com
mailto:slssp@uohyd.ernet.in
http://dx.doi.org/10.1016/j.swevo.2014.06.005


paper is to compare the performance of both fixed and floating
point DE algorithms with both APU and SU interfacing techniques
while optimizing a set of test bench functions. In the first
technique, the IP is interfaced using an Auxiliary Processor Unit
(APU) with the PPC440 embedded processor and in other techni-
que, it is interfaced as a Slave Unit (SU) with the shared local bus of
embedded processor. The hardware accelerators are scalable in
terms of the population size, number of generations and dimen-
sion, that can be modified by the user through the embedded
processor. All the modules of DE including fitness function
evaluation are implemented in the hardware, and used as a
dedicated hardware accelerator to reduce the bus transaction time
[10]. The objective of this work is to evaluate the SoC system
performance in terms of execution time, resource utilization and
power consumption while solving different optimization pro-
blems. Initially the acceleration is evaluated by solving numerical
test bench functions and later the DE IP is used for solving a
second and a fourth order IIR based system identification problem
and implemented in FPGA. The optimized IIR filter coefficients are
obtained using the DE hardware accelerator.

The rest of the paper is described as follows. Section 2 presents
the literature survey about the hardware implementation of
evolutionary algorithms. Hardware architecture of DE algorithm
is described in Section 3. Programmable system on chip plat-
form for DE accelerator with two types of bus interface is
explained in Section 4. Section 5 presents the experimental setup.
Section 6 describes the results and analysis of DE accelerators.
Section 7 presents the IIR system identification task as a case
study for real world application of DE followed by conclusions in
Section 8.

2. Literature survey

In the recent years, evolutionary algorithms have been imple-
mented in hardware. Ascia et al. discussed the importance of
evolutionary algorithms in space exploration using GA and a
parametrized SoC platform on two different processors was
implemented with strict power consumption and performance
constraints [12]. The two processors are the following: (i) Reduced
Instruction Set Computing (RISC) R3000 Microprocessor without
Interlocked Pipeline Stages (MIPS) processor and (ii) Very Large
Instruction Word (VLIW) processor and a memory subsystem with
two cache levels. It resulted in pareto-optimal configuration for

optimum power consumption and execution time of a specific
embedded application.

A Complete Hardware Evolution (CHE) of Genetic Algorithm
(GA) was implemented on a single FPGA to evaluate single variable
fitness functions [14], and reported that the execution speed is
improved significantly as compared to its software implementa-
tion. A comprehensive review of the literature related to FPGA
implementation of EAs is tabulated in Table 1. However, this
implementation has no provision to configure the GA parameters
like mutation, crossover rates, population size and number of
generations, and it cannot be directly interfaced to higher dimen-
sional fitness functions. To overcome the above-mentioned draw-
backs in [14] a customized IP of GA was implemented in the
Xilinx FPGA and attained the speed enhancement up to five times
[13]. This core can be interfaced to any appropriate application-
specific fitness evaluation module and the GA parameters are
programmable. Along with GA, Particle Swarm Optimization (PSO)
algorithm was implemented in the FPGA using software/hardware
co-design principle and this was based on modular design archi-
tecture [15]. A particle updating accelerator module was imple-
mented in the hardware and fitness evaluation was performed
either on the soft-core processor or FPGA. Experimental results of
[15] revealed that hardware execution is approximately 20�
faster when compared to its equivalent software implementation
on NIOS-II processor.

Recently, the shortcomings of the software based PSO were
addressed by Tewolde et al. [17]. A modular, flexible and reusable
hardware architecture was reported and it accelerates the execution
performance by overcoming the drawbacks of software implemen-
tation of the PSO algorithm on Freescale μ C and Xilinx MicroBlaze
soft processor core. As a result, hardware PSO accelerated the
performance with average speedups ranging from 359� to 653�
over the Freescale processor, and achieved an acceleration of
37–52� over MicroBlaze processor, running at the same clock
frequency. In [24] the particle positions were updated on the FPGA
logic while the fitness function was evaluated on Nios-II embedded
processor. The modular design enhances the flexibility to modify
the fitness function using software. Due to this flexibility, various
embedded applications can be developed simply by changing the
objective function. Although this approach has more flexibility,
improvement in the execution speed is less. Later, an architecture
for PSO algorithm was proposed in which an on-chip multiproces-
sing based on system-on-a-programmable-chip (SOPC) methodol-
ogy is used to realize the PSO algorithm [16]. Later a hardware
accelerator for PSO algorithm was reported [18] and validated its

Table 1
Review of existing literature on FPGA implementation of evolutionary algorithms.

Work Algorithm Processor (Hz) IP Freq (Max Freq) (MHz) FPU used Speedup Target board

[13] GA PowerPC (200) 50 (50) No 5.16� Xilinx Virtex-II Pro
[14] GA PC – (50) No – Xilinx SP3E
[15] PSO Nios-II (50) 50 (50) No 20� Altera DE2-70
[16] PSO 4 Nios-II (50) 50 (76.3) No 98� Altera Stratix
[17] PSO Freescale (25) 25 (–) No 359–653� MC9S12DP256B

MicroBlaze (25) 25 (42.5) & 25 (29.8) 37–52� Xilinx Virtex-II Pro Xilinx SP3E
[18] PSO MicroBlaze (200) – (233) No 18–135� Xilinx Virtex-6
[19] GA 16 EM64T CPU (3.2G) 8–15 (–) Yes 1.3–3� Altera Cyclone
[9] GA CPU (2.7G) 190 (175) Yes 7–116� Xilinx Virtex-5

GPU (Nvidia Quadro FX) (450M) 110 (100) 7.3–12.3�
[20] PSO CPU(1.6G) with MATLAB 50 (94) Yes 78–127� Xilinx Virtex-5
[21] PSO MicroBlaze (50M) 50 (99) Yes 6490–13,820� Xilinx Virtex-5

CPU (1.6G) with MATLAB 3.6–4.2�
[22] PSO MicroBlaze (50M) 40 (40) Yes 6465–13,888� Xilinx Virtex-5

CPU (1.6G) 1.4–3.1�
[11] DE PPC440 (200M) 33 (65) No 80–150� Xilinx Virtex-5
[10] DE PPC440 (200M) 50 (120) Yes 200� Xilinx Virtex-5
[23] FA MicroBlaze (100M) 100 (130) Yes 1156� Xilinx Virtex-5

R. Peesapati et al. / Swarm and Evolutionary Computation 19 (2014) 68–81 69



Download English Version:

https://daneshyari.com/en/article/494026

Download Persian Version:

https://daneshyari.com/article/494026

Daneshyari.com

https://daneshyari.com/en/article/494026
https://daneshyari.com/article/494026
https://daneshyari.com

