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a b s t r a c t

A novel optimization algorithm, called the Magnetic Optimization Algorithms (MOAs), is proposed in
this paper which is inspired by the principles of magnetic field theory. In MOA, the possible solutions are
some magnetic particles scattered in the search space. In this respect, each magnetic particle has a
measure of mass and magnetic field according to its fitness. In this scheme, the fitter magnetic particles
are more massive, with stronger magnetic field. In terms of interaction, these particles are located in a
structured population and apply a long range force of attraction to their neighbors. Ten different
structures are proposed for the algorithm and the structure that offers the best performance is found.
Also, to improve the exploration ability of the algorithm, several operators are proposed: a repulsive
short-range force, an explosion operator, a combination of short-range force and explosion operator and
a crossover interaction between the neighboring particles. In order to test the proposed algorithm and
the proposed operators, the algorithm is compared with a variety of existing algorithms on 21 numerical
benchmark functions. The experimental results suggest that the proposed algorithm outperforms some
of the existing algorithms.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Inspired by nature, many researchers have proposed new sets of
algorithms and tools, particularly in the realm of artificially intelli-
gent systems. Optimization is one such general aspect of intelligence,
for which different imitations of nature are developed. Some of the
first major efforts in this regard were the Evolutionary Programming
(EP) [1] and Evolutionary Strategy (ES) [2]. The improved version of
these two algorithms, called the Fast Evolutionary Programming
(FEP) [3] and Fast Evolutionary Strategy (FES) [4] were then pro-
posed. Simulated Annealing is another group of algorithms that is
inspired from annealing in metallurgy [5]. The other group of
algorithms is the Genetic Algorithms which are arguably the most
famous population based algorithms and are inspired by the Darwi-
nian natural evolution of species. A more recent set of population
based algorithms is the Swarm Intelligence which was inspired by
the collective behavior of flocks. Among these are the Synthetic
Predatory Search Strategy which is inspired by the behavior of
predators and preys [6], Ant Colony Optimization inspired by the
behavior of ants [7], Particle Swarm Optimization inspired by the bird
flocks [8], Bacterial Chemotaxis algorithms inspired by the bacterial
chemotaxis model [9], Bacterial Foraging Optimization [10], Quantum

Evolutionary Algorithms [11], Society and Civilization Optimization
based on the simulation of social behavior [12], Group Search
Optimizer [13] and Chemical Reaction Optimization [14]. These
population based optimization algorithms promise more robust
search due to their parallel nature. The main challenge in such
algorithms is how to combine existing knowledge and create a
synergism in the population of solutions to better accelerate their
convergence to globally optimal solutions.

Evolutionary algorithms aim to provide better diversity by prob-
abilistic recombination of solutions. One way to preserve diversity in
the population is by structured EAs such as distributed [15] and
cellular algorithms [16,17]. In distributed evolutionary algorithms,
the population is partitioned into a set of islands where an isolated
EA is executed on each island. In Cellular EAs (CEAs), the individuals
are located in a grid structured population and each individual
interacts with its neighbors. These types of decentralized algorithms
provide a better sampling of the search space and thus improve the
performance of EAs [16]. Rudolph and Sprave were the first to
propose the cellular structure for genetic algorithms.

In the Particle Swarm Optimization algorithm, the fitness of
the particles in the population is found and each particle tries to
imitate the best particle(s) in the population. Each particle finds
the best particle globally and adjusts its velocity towards the
location of the best particle. There are several works that have
tried to improve the performance of this basic PSO strategy.
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In [18], for example, a cooperative particle swarm optimizer is
proposed, where multiple swarms cooperatively optimize different
components of solutions. A comprehensive learning particle swarm
optimizer is proposed in [19], which uses a novel learning strategy
based on the historical best information of all particles to update the
velocity of the particles. For learning to play games, Ref. [20] uses PSO
to train neural networks and to predict the desirability of states in the
leaf nodes of a game tree. To solve multi-modal optimization
problems and to track multiple optima in dynamic environments,
Ref. [21] proposed a species-based particle swarm optimizer. In
another similar work, Ref. [22] uses multi-swarms PSO that is
specially designed to work in dynamic environments. Ref. [23]
proposes a novel parameter automation strategy for the particle
swarm algorithm. They propose time-varying acceleration coefficients
and inertia weight factor to control the convergence of the algorithm.

Despite being efficient and thus widely used in a variety of
applications, the conventional PSO has some weaknesses. One, for
example, is that it is only the best particle(s) that affect the motion
of other particles, and the inferior particles do not influence the
search process. The algorithm hence ignores important informa-
tion that lies within the particles with low fitness. In this sense, a
paradigm that gives a chance to the inferior particles to affect
other particles can improve the performance. This encouraged us
to propose a new scheme for interaction among the particles. The
MOA, recently proposed by authors in [24], is a new paradigm
of interaction for optimization that is based on the principles
of attraction/repulsion among magnetic particles. Unlike other
natural fields such as gravitational that always attracts and
electrical that always either attracts or repulses based on sign
difference/similarity, magnetic particles exhibit both attraction
and repulsion to a given particle based on their relative polarity.
As will be shown in this research, this dual function can be useful
in optimization to balance exploitation versus exploration. In this
algorithm, the particles are attracted/repulsed to/by their neigh-
boring particles in a lattice-like structured population. In [24],
a basic version of this paradigm of interaction that accounted only
for long range force of attraction, without the repulsion, was
successfully applied to 14 numeric benchmark problems. Since
proposed, the algorithm has been used on some applications
including training a multi-layer perceptron training [25] and a
traveling salesman problem [26]. A binary version of the algorithm
is also proposed in [27]. In this paper, we extend our earlier
algorithm by investigating the effect of short-range repulsion in
addition to several other new operators. The short range force is
activated only when the distance between two particles is less
than a certain threshold. The repulsive short-range force aims
to maintain diversity of population and thereby to improve the
exploration ability of the proposed algorithm. This characteristic
makes the algorithm capable of effectively searching the optim-
ization landscape as will be shown in this paper. Several other
operators including an explosion operator, a combination of short-
range repulsion and explosion operators, as well as a crossover
interaction between the particles are also investigated. The pro-
posed algorithm is compared with a group of existing algorithms
including GA [28], PSO [8], Evolutionary Programming (EP) [1],
Fast Evolutionary Programming (FEP) [3], Evolutionary Strategy
(ES) [29], Fast Evolutionary Strategy (FES) [30], Ma-ssw-chains
(MASSW) [31] and Differential Evolution (DE). Experimental
results on 21 benchmark functions show that the proposed algor-
ithm consistently outperforms its basic competing alternative PSO
paradigm and, on most of the problems, performs better than the
existing algorithms. These benchmark algorithms are chosen to
provide adequate comparison with the existing algorithms.

This paper is organized as follows. The basic Magnetic Optimi-
zation Algorithm is introduced in Section 2. Section 3 proposes
four novel operators: the short-range repulsion (SRR), explosion

(EXP), hybrid explosion-repulsion (HER) and crossover interaction
MOA (X-MOA) to improve the performance of MOA. For proper
comparison, in Section 4, the best parameters for the proposed
MOA and its operators, as well as parameters of rival algorithms
for each of the 21 numerical benchmark functions are separately
determined. In Section 5 several structures are proposed and the
effect of structure on the performance of the population is
examined. Section 6 tests the proposed algorithm on 21 numerical
functions and compares it with different algorithms. Finally,
Section 7 concludes the paper.

2. Magnetic Optimization Algorithms

Electromagnetic force is one of the four fundamental forces in
the universe. This force has a long-range effect, meaning its effect
disappears only when the distance between the two particles is
infinite. Unlike other fundamental forces, in magnetic field theory,
there exist two types of attractive and repulsive forces. In gravity
theory for example, there is only attractive force. In electrical field,
if two particles have different charges, they perpetually attract
each other, and having a similar charge indicates that they repulse
each other. In the magnetic field theory on the other hand, two
particles can repulse or attract each other relative to their polarity.
Inspired by this paradigm, this paper proposes a novel Magnetic
Optimization Algorithm, in which the possible solutions are some
magnetic particles that can apply attractive long-range force and
repulsive short range force on one another. To investigate the
effect of various operators, the basic MOA algorithm only accounts
for the attractive long-range force. Extensions on the basic MOA
with four other types of operators such as SRR, EXP, HER, and
X-MOA are investigated in the algorithm's second stage of devel-
opment. Furthermore, in MOA, the magnetic particles operate in a
lattice like interactive population as shown in Fig. 1.

The pseudo-code of the proposed optimization algorithm is
briefly shown below and is described in the following steps:

Procedure Basic MOA
begin
t¼0

1. initialize X0 with a structured population
2. while not termination condition do
begin

t ¼ tþ1
3. evaluate the particles in Xt and store their performance in

magnetic fields Bt

4. normalize Bt according to Eq. (2)
5. evaluate the mass Mt for all particles according to (3)

1,1 1,2 … 1,S

2,1 2,S2,2 …

… …… …

S,1 S,SS,2 …

Fig. 1. The proposed cellular structure for the population with the size of S.
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