
Regular Paper

Using animal instincts to design efficient biomedical studies via
particle swarm optimization

Jiaheng Qiu a, Ray-Bing Chen b, Weichung Wang c, Weng Kee Wong a,n

a Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
b Department of Statistics, National Cheng-Kung University, Tainan 70101, Taiwan
c Institute of Applied Mathematical Sciences, National Taiwan University, 10617, Taipei, Taiwan

a r t i c l e i n f o

Article history:
Received 14 June 2013
Received in revised form
9 May 2014
Accepted 27 June 2014
Available online 15 July 2014

Keywords:
Approximate design
c-optimal design
D-optimal design
Efficiency
Metaheuristic algorithms
Particle swarm optimization

a b s t r a c t

Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving
complex optimization problems. Its popularity is due to its repeated successes in finding an optimum
or a near optimal solution for problems in many applied disciplines. The algorithmmakes no assumption
of the function to be optimized and for biomedical experiments like those presented here, PSO typically
finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to
find various types of optimal designs for several problems in the biological sciences and compare PSO
performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in
the engineering literature.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Optimal experimental designs have been gaining attention in
the last two decades [1]. A main reason is rising cost in conducting
experiments and an increasing realization in more applied fields
that optimal design ideas can save costs substantially without
sacrifice in statistical efficiency. Some examples are given in [2–6],
where the problems include designing reaction kinetics studies to
medical studies with a time-to-event outcome. Berger and Wong
[7] describes a collection of concrete applications of optimal designs
to real problems that ranges from applications in biomedical and
social science arenas, including a design problem to identify optimal
locations to monitor groundwater wells in the Los Angeles basin.

Nonlinear models are frequently used to study outcomes or
responses in biomedical experiments. This means that we assume a
known nonlinear functional relationship between the mean
response and the independent variables. This function has
unknown parameters that determine the shape and properties of
the mean response and one common goal in the study is to estimate
the parameters in the mean function. In addition, the model also
has an unobservable error term with mean zero and constant
variance. Given a study objective, the design problem involves
selecting the right number of combination levels of the

independent variables to observe the outcome and what these
levels are. The design optimality criterion for nonlinear models
depends on the values of the model parameters and nominal values
(or best guesses for these parameters) are required before the
optimal design can be implemented. Because the optimal designs
depend on the nominal values, they are termed locally optimal.
Such optimal designs usually represent the fist step in finding an
optimal design strategy and is the simplest to construct and study.

The analytical description of the locally optimal design for a
nonlinear model is rarely available unless the model is very simple.
When they do exist, they are usually complicated; see for example,
the analytical description for the locally D-optimal design for
estimating the two parameters in the logistic model [8]. Further,
the formula or analytical description of the optimal design in a
nonlinear model is invariably derived under a set of mathematical
assumptions that may or may not apply in practice. For these
reasons, it is desirable to have a flexible and effective algorithm that
can find a variety of optimal designs quickly and reliably.

There are algorithms for finding optimal designs and most are
based on heuristics or intuition and they do not have a theoretical
basis. Only a couple of algorithms can be proven to converge to the
optimal designs and prominent ones include Fedorov's and
Wynn's algorithms for generating D and c-optimal designs [9,10].
The former designs are useful for estimating all parameters in the
mean function and the latter targets estimation of a specific
function of the model parameters by minimizing, respectively,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

http://dx.doi.org/10.1016/j.swevo.2014.06.003
2210-6502/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.

Swarm and Evolutionary Computation 18 (2014) 1–10

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2014.06.003
http://dx.doi.org/10.1016/j.swevo.2014.06.003
http://dx.doi.org/10.1016/j.swevo.2014.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.06.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.06.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.06.003&domain=pdf
http://dx.doi.org/10.1016/j.swevo.2014.06.003


the volume of the confidence ellipsoid and the asymptotic var-
iance of the estimated function of interest. For the few algorithms
that can be shown to converge mathematically, problems may still
exist and they include (i) they take too long to converge, (ii) they
may fail to converge for more complicated setups that they are not
designed, such as for nonlinear for mixed effects nonlinear models,
and (iii) numerical issues due to rounding problems or the
intrinsic nature of the sequential process; for example, many
algorithms produce clusters of support points as the algorithm
proceeds and these clusters require periodic and judicious collap-
sing into the correct distinct but unknown support points.

In the next section, we briefly review particle swarm optimiza-
tion (PSO) methodology and show that it is an exciting, easy and
effective algorithm to generate optimal designs for statistical
models. This algorithm has been used for almost a dozen of years
in the computer science and engineering circles, and increasingly
more so in recent years due to its repeated successes in solving
increasingly large class of applied problems. The main reasons for
its popularity seem to be its flexibility, ease of implementation and
utility, and general applicability to solve (or nearly solve) complex
optimization problems without having to make specific assump-
tions on the objective function. In Section 3 we present the
statistical background and demonstrate PSO can efficiently find a
variety of optimal designs for different types of nonlinear models in
biomedicine. Section 4 provides a discussion and also compares PSO
performance relative to the differential evolution algorithm, which
is another popular metaheuristic algorithm for solving optimization
problems in engineering problems. Section 5 is the conclusion.

2. Particle swarm optimization (PSO)

Nature-inspired algorithms have been gaining popularity and
dominance in the last decade both in academia and industrial
applications after adjusting for different types of biases [11,12].
One of the most prominent examples of a nature-inspired algo-
rithm is Particle Swarm Optimization (PSO) based on swarm
intelligence. It is a metaheuristic algorithm and comes about from
the research in fish and swarm movement behavior. PSO is
intriguing in that they always seem to be able to quickly solve
the optimization problem or provide good quality solutions for
many types of complex optimization problems, even though the
method itself lacks a firm theoretical justification to date. An
attempt to explain its success from a biological viewpoint is given
in Garnier et al. [13] and an overview of PSO is available in Poli
et al. [14]. Common characteristics of PSO includes its ability to
find the optimal solution to a complex problem or gets close to the
optimal solution quickly without requiring any assumption on the
function to be optimized. PSO codes are available on many
websites such as http://www.swarmintelligence.org, http://parti
cleswarm.info with the latter website more updated and consis-
tently so. In addition, codes are available in books on metaheur-
istic methods like Yang [15] and also in software such as MATLAB
where several PSO codes can be found at the Programs section at
http://www.mathworks.com/matlabcentral/fileexchange/7506.

There are two basic equations that drive movement for the
each particle in the PSO algorithm in its search to optimize an
objective function hð�Þ. At times t and tþ1, the movement of
particle i is governed by

vtþ1
i ¼ τtvt

i þγ1β1 � ðpi�xt
i Þþγ2β2 � ðpg�xt

i Þ; ð1Þ

and

xtþ1
i ¼ xt

i þvtþ1
i : ð2Þ

Here, vt
i is the particle velocity at time t and xt

i is the current
particle position at time t. The inertia weight τt adjusts the

influence of the former velocity and can be a constant or a
decreasing function with values between 0 and 1. For example, a
linearly decreasing function over the specified time range with
initial value 0.9 and end value 0.4 [16]. Further, the vector pi is the
personal best (optimal) position as perceived by the ith particle
and the vector pg is the global best (optimal) position as perceived
by all particles, up to time t. This means that up to time t, the
personal best for particle i is pbesti ¼ hðpiÞ and gbest ¼ hðpgÞ. The
two random vectors in the PSO algorithm are β1 and β2 and their
components are usually taken to be independent random variables
from Uð0;1Þ. The constant γ1 is the cognitive learning factor and γ2
is the social learning factor. These two constants determine how
each particle moves toward its own personal best position or
overall global best position. For our design problems, we set
γ1 ¼ γ2 ¼ 2 and they all worked well for the problems we dis-
cussed including almost all other design problems that we have
investigated this far. In Eq. (1), the product in the last two terms is
Hadamard product.

The pseudo code for the PSO procedure for a flock of size n is as
follows.

Algorithm 1.

(1) Initialize particles
(1.1) Initiate positions xi and velocities vi for i¼1,…,n.
(1.2) Calculate the fitness values hðxiÞ for i¼1,…,n.
(1.3) Determine the personal best positions pi ¼ xi and

the global position pg .
(2) Repeat until stopping criteria are satisfied.

(2.1) Calculate particle velocity according to Eq. (1).
(2.2) Update particle position according to Eq. (2).
(2.3) Calculate the fitness values hðxiÞ.
(2.4) Update personal and global best positions pi and pg .

(3) Output pg ¼ arg min hðxÞ with gbest ¼ hðpgÞ.

The initial velocity for each particle may be set equal to 0 or be
randomly assigned from Uð0;1Þ. A key difference in our PSO
version is that our version requires that the weights in designs
are positive and they sum to unity and we pull back particles that
wander outside of the design space to the boundary. The rationale
for having this feature is that many D-optimal designs have
support points at the boundary of the design space, see [17]
for example. Without this feature that we have introduced into
the PSO algorithm, our experience is that PSO becomes either
very slow or it fails to find the optimal design, especially in high
dimensional problems.

3. Generating optimal designs for biomedical studies using
PSO

In this section, we discuss the statistical background and apply PSO
to find various types of optimal designs for common models in the
biomedical studies. These models may appear small in terms of the
number of parameters that they have but as noted in Konstantinou
et al. [18], finding optimal designs for such models can still be
problematic using traditional numerical methods or analytically.

Here and throughout, our focus is approximate designs, which
are probability measures defined on the given design space X [19].
This means that once we are given a pre-determined sample size
n, a given model and a design criterion (or objective function) hð�Þ,
our optimization problem is to find the number (k) of design
points (or support points) required, the locations of the design
points x1;…; xk in X and the weight distribution w1;…;wk at these
points to optimize the given criterion hð�Þ. These weights naturally

J. Qiu et al. / Swarm and Evolutionary Computation 18 (2014) 1–102

http://www.swarmintelligence.org
http://particleswarm.info
http://particleswarm.info
http://www.mathworks.com/matlabcentral/fileexchange/7506


Download English Version:

https://daneshyari.com/en/article/494029

Download Persian Version:

https://daneshyari.com/article/494029

Daneshyari.com

https://daneshyari.com/en/article/494029
https://daneshyari.com/article/494029
https://daneshyari.com

